Hi can someone check over my work? Thanks
Find the local exterma
\(\displaystyle \L\ y=xlnx\)
\(\displaystyle \L\frac{dy}{dx}=(1)(lnx)+(x)(\frac{1}{x})\)
\(\displaystyle \L\ 0=lnx+1\)
\(\displaystyle \L\ -1=lnx\)
\(\displaystyle \L\ -1=log_{e}x\)
\(\displaystyle \L\ e^{-1}=x\)
\(\displaystyle \L\frac{1}{e}=x\)
Find the local exterma
\(\displaystyle \L\ y=xlnx\)
\(\displaystyle \L\frac{dy}{dx}=(1)(lnx)+(x)(\frac{1}{x})\)
\(\displaystyle \L\ 0=lnx+1\)
\(\displaystyle \L\ -1=lnx\)
\(\displaystyle \L\ -1=log_{e}x\)
\(\displaystyle \L\ e^{-1}=x\)
\(\displaystyle \L\frac{1}{e}=x\)