find the limit

spacewater

Junior Member
Joined
Jul 10, 2009
Messages
67
problem
lim?x>0sin[(π/6)+?x](12)?x\displaystyle \frac{lim}{?x->0} \frac{sin[(\pi/6)+?x]-( \frac{1}{2})}{?x} (Find the limit when ?x approaches 0)
Steps
sin(π/6)cos?x+cos(π/6)sin?x(1/2)?x\displaystyle \frac{sin(\pi/6)cos?x+cos(\pi/6)sin?x-(1/2)}{?x}
1/2cos?x+3/2sin?x1/2?x\displaystyle \frac {1/2cos?x+\sqrt3/2sin?x-1/2}{?x}

this is where I got stuck... 1/2 * cos(0) +3\displaystyle \sqrt3/2*sin(0) - 1/2 = 1/2-1/2 = 0
Can someone point out where I went wrong on this equation please?
 
Where you got stuck: limΔx0cos(Δx)+3sin(Δx)12Δx\displaystyle Where \ you \ got \ stuck: \ \lim_{\Delta x\to0}\frac{cos(\Delta x)+\sqrt3sin(\Delta x)-1}{2\Delta x}

AsΔx approaches 0. we get the indeterminate form 00, hence a job for the Marqui.\displaystyle As \Delta x \ approaches \ 0. \ we \ get \ the \ indeterminate \ form \ \frac{0}{0}, \ hence \ a \ job \ for \ the \ Marqui.
 
Top