Find the length of the curve. Check my work.

shivers20

Junior Member
Joined
Mar 3, 2006
Messages
68
I think the answer is wrong, I made a mistake somewhere, not sure where.


x= (y^3/3)+ 1/(4y), from y=1 to y=4.

x' = x^2 + 1/4

1+ (x^2+1/4)^2

= 1+ (x^4 + 1/16)

1+ x^4 -1/2 +1/16

x^4 + 1/2 + 1/16

(x^2 + 1/4) ^2

L = 1 and 4 (x^2 + 1/4)^2

(x^2 + 1/4)dx

[x^3 + x/4 ] 1 and 4

8/3 + 1/4 - 64/3 + 1 = -209/12
 
shivers20 said:
x= (y^3/3)+ 1/(4y), from y=1 to y=4.

x' = x^2 + 1/4
Oops.

1) How did 'y' change to 'x'?
2) That '4y' appears to be in the denominator. Your derivative of that piece is not good.

Take another shot at it.
 
You seem to have tackled objection #2. How about #1?
 
Hello, shivers20!

Let's start over . . .


\(\displaystyle x\;= \;\frac{y^3}{3}\,+\,\frac{1}{4y}\;\;\) from \(\displaystyle y=1\) to \(\displaystyle y=4\)

We have: \(\displaystyle \L\,x\:=\:\frac{1}{3}y^3\,+\,\frac{1}{4}y^{-1}\)

Then: \(\displaystyle \L\,\frac{dx}{dy}\:=\:y^2\,-\,\frac{1}{4}y^{-2}\)

And: \(\displaystyle \L\,\left(\frac{dx}{dy}\right)^2\:=\:\left(y^2\,-\,\frac{1}{4}y^{-2}\right)^2 \;= \;y^4 \,-\,\frac{1}{2}\,+\,\frac{1}{16}y^{-4}\)

So: \(\displaystyle \L\,1\,+\,\left(\frac{dx}{dy}\right)^2\;= \;1\,+\,\left(y^4 \,-\,\frac{1}{2}\,+\,\frac{1}{16}y^{-4}\right)\)

\(\displaystyle \L\;\;\;\;= \;y^4\,+\,\frac{1}{2}\,+\,\frac{1}{16}y^{-4}\;=\;\left(y^2\,+\,\frac{1}{4}y^{-2}\right)^2\)


Therefore, the integral is: \(\displaystyle \L\:L \;= \;\int^{\;\;\;4}_1\left(y^2\,+\,\frac{1}{4}y^{-2}\right)\,dy\)

 
Top