Let r be the curve r(t) = (t, tsint, tcost) Find the length of r between the points (0,0,0) and (pi, 0, -pi)
Here's what I've done so far
\(\displaystyle \
\L\
\begin{array}{l}
r(t) = (t,t\sin t,t\cos t) \\
r'(t) = (1,\sin t + t\cos t,\cos t - t\sin t) \\
\left\| {r'(t)} \right\| = \sqrt {2 + t^2 } \\
L = \int_?^? {\sqrt {2 + t^2 } } dt \\
2\int_?^? {\sec ^3 } \theta d\theta \\
\sec \theta \tan \theta + \ln \left| {\sec \theta + \tan \theta } \right| + c \\
\frac{1}{{\frac{{\sqrt 2 }}{{\sqrt {2 + t^2 } }}}}\frac{1}{{\sqrt 2 }} + \ln \left| {\frac{1}{{\frac{{\sqrt 2 }}{{\sqrt {2 + t^2 } }}}} + \frac{1}{{\sqrt 2 }}} \right| \\
\end{array}
\\)
And I only have one word at this point. Lost. I put in "?'s" for the intergral because i'm not sure what they are. Are they pi and negative pi? Really lost with this one.[/tex]
Here's what I've done so far
\(\displaystyle \
\L\
\begin{array}{l}
r(t) = (t,t\sin t,t\cos t) \\
r'(t) = (1,\sin t + t\cos t,\cos t - t\sin t) \\
\left\| {r'(t)} \right\| = \sqrt {2 + t^2 } \\
L = \int_?^? {\sqrt {2 + t^2 } } dt \\
2\int_?^? {\sec ^3 } \theta d\theta \\
\sec \theta \tan \theta + \ln \left| {\sec \theta + \tan \theta } \right| + c \\
\frac{1}{{\frac{{\sqrt 2 }}{{\sqrt {2 + t^2 } }}}}\frac{1}{{\sqrt 2 }} + \ln \left| {\frac{1}{{\frac{{\sqrt 2 }}{{\sqrt {2 + t^2 } }}}} + \frac{1}{{\sqrt 2 }}} \right| \\
\end{array}
\\)
And I only have one word at this point. Lost. I put in "?'s" for the intergral because i'm not sure what they are. Are they pi and negative pi? Really lost with this one.[/tex]