find the length of each curve: x=1+3t, y=4t-1, 1<= t<=7, and

atul

New member
Joined
Feb 24, 2009
Messages
6
Im stuck in this 2 problems help is much appriciated:

1. x=1+3t y=4t-1 1<= t <=7

2 y= (1/10)X^5+(1/6)X^-3 1<=X<=2

thanks if someone can help
 
Im stuck in this 2 problems help is much appriciated:

1. x=1+3t y=4t-1 1<= t <=7

2 y= (1/10)X^5+(1/6)X^-3 1<=X<=2

thanks if someone can help
 
Re: finding the length of a curve

For 1, dx/dt = 3, dy/dt = 4

\(\displaystyle \int _{t_o} ^{t_f} \sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2}dt = \int _1 ^7 \sqrt{(3)^2+(4)^2}dt = ?\)

For 2,

\(\displaystyle \int _{x_0} ^{x_1} \sqrt{1+(y')^2}dx\)
 
Re: find the length of each curve

Hello, atul!

Exactly where are you stuck?

You don't know the Arc Length formulas?
You have them but don't know how to use them?
You really suck at algebra?
You don't know how to integrate?
You can't evaluate definite integrals?


\(\displaystyle 1)\;\;x\:=\:1+3t,\quad y\:=\:4t-1,\quad 1\leq t \leq 7\)

\(\displaystyle \text{Formula (for parametric functions): }\;L \;=\;\int^b_a\sqrt{\left(\tfrac{dx}{dt}\right)^2 + \left(\tfrac{dy}{dt}\right)^2}\,dt\)


\(\displaystyle \text{We have: }\;\begin{Bmatrix}x &=& 1+3t & \Rightarrow & \frac{dt}{dt} &=& 3 \\ \\[-3mm] y &=& 4t-1 & \Rightarrow & \frac{dy}{dt} &=& 4 \end{Bmatrix}\)

\(\displaystyle \text{Then: }\;\sqrt{\left(\tfrac{dx}{dt}\right)^2 + \left(\tfrac{dy}{dt}\right)^2}} \;=\;\sqrt{3^2+4^2} \;=\;\sqrt{25} \;=\;5\)

\(\displaystyle \text{Therefore: }\;L \;=\;\int^7_1 5\,dt\quad\hdots\text{ etc.}\)




\(\displaystyle 2)\;\;y\:=\: \frac{x^5}{10} + \frac{x^{-3}}{6},\quad 1\leq x \leq 2\)

\(\displaystyle \text{Formiula: }\;L \;=\;\int^b_a\sqrt{1 + \left(\frac{dy}{dx}\right)^2}\,dx\)

\(\displaystyle \text{We have: }\;y \:=\:\frac{x^5}{10} + \frac{x^{\:\text{-}3}}{6}\)

\(\displaystyle \text{Then: }\;\frac{dy}{dx} \;=\;\frac{x^4}{2} - \frac{x^{\:\text{-}4}}{2}\)

. . \(\displaystyle \left(\frac{dy}{dx}\right)^2 \;\;=\;\;\left(\frac{x^4}{2} - \frac{x^{\:\text{-}4}}{2}\right)^2 \;\;=\;\;\frac{x^8}{4} - \frac{1}{2} + \frac{x^{\:\text{-}8}}{4}\)

. . \(\displaystyle 1 + \left(\frac{dy}{dx}\right)^2 \;\;=\;\;1 + \frac{x^8}{4} - \frac{1}{2} + \frac{x^{\:\text{-}4}}{4} \;\;=\;\;\frac{x^8}{4} + \frac{1}{2} + \frac{x^{\:\text{-}8}}{4} \;\;=\;\;\left(\frac{x^4}{2} + \frac{x^{\:\text{-}4}}{2}\right)^2\)

. . \(\displaystyle \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \;\;=\;\;\sqrt{\left(\frac{x^4}{2} + \frac{x^{\:\text{-}4}}{2}\right)^2} \;\;=\;\;\frac{x^4}{2}+\frac{x^{\:\text{-}4}}{2} \;\;=\;\;\frac{1}{2}\left(x^4} + x^{\:\text{-}4}\right)\)


\(\displaystyle \text{Therefore: }\;L \;=\;\frac{1}{2}\int^2_1\left(x^4 - x^{\:\text{-}4}\right)\,dx \quad\hdots\:\text{ etc.}\)

 
thank you i was struggling to get through the power part and didnt knew how to go ahead with it. It was really helpful.
 
Top