JavaScript is disabled. For a better experience, please enable JavaScript in your browser before proceeding.
You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser .
find the length of each curve: x=1+3t, y=4t-1, 1<= t<=7, and
Im stuck in this 2 problems help is much appriciated:
1. x=1+3t y=4t-1 1<= t <=7
2 y= (1/10)X^5+(1/6)X^-3 1<=X<=2
thanks if someone can help
Im stuck in this 2 problems help is much appriciated:
1. x=1+3t y=4t-1 1<= t <=7
2 y= (1/10)X^5+(1/6)X^-3 1<=X<=2
thanks if someone can help
Re: finding the length of a curve
For 1, dx/dt = 3, dy/dt = 4
\(\displaystyle \int _{t_o} ^{t_f} \sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2}dt = \int _1 ^7 \sqrt{(3)^2+(4)^2}dt = ?\)
For 2,
\(\displaystyle \int _{x_0} ^{x_1} \sqrt{1+(y')^2}dx\)
Re: find the length of each curve
Hello, atul!
Exactly where are you stuck?
You don't know the Arc Length formulas?
You have them but don't know how to use them?
You really suck at algebra?
You don't know how to integrate?
You can't evaluate definite integrals?
\(\displaystyle 1)\;\;x\:=\:1+3t,\quad y\:=\:4t-1,\quad 1\leq t \leq 7\)
\(\displaystyle \text{Formula (for parametric functions): }\;L \;=\;\int^b_a\sqrt{\left(\tfrac{dx}{dt}\right)^2 + \left(\tfrac{dy}{dt}\right)^2}\,dt\)
\(\displaystyle \text{We have: }\;\begin{Bmatrix}x &=& 1+3t & \Rightarrow & \frac{dt}{dt} &=& 3 \\ \\[-3mm] y &=& 4t-1 & \Rightarrow & \frac{dy}{dt} &=& 4 \end{Bmatrix}\)
\(\displaystyle \text{Then: }\;\sqrt{\left(\tfrac{dx}{dt}\right)^2 + \left(\tfrac{dy}{dt}\right)^2}} \;=\;\sqrt{3^2+4^2} \;=\;\sqrt{25} \;=\;5\)
\(\displaystyle \text{Therefore: }\;L \;=\;\int^7_1 5\,dt\quad\hdots\text{ etc.}\)
\(\displaystyle 2)\;\;y\:=\: \frac{x^5}{10} + \frac{x^{-3}}{6},\quad 1\leq x \leq 2\)
\(\displaystyle \text{Formiula: }\;L \;=\;\int^b_a\sqrt{1 + \left(\frac{dy}{dx}\right)^2}\,dx\)
\(\displaystyle \text{We have: }\;y \:=\:\frac{x^5}{10} + \frac{x^{\:\text{-}3}}{6}\)
\(\displaystyle \text{Then: }\;\frac{dy}{dx} \;=\;\frac{x^4}{2} - \frac{x^{\:\text{-}4}}{2}\)
. . \(\displaystyle \left(\frac{dy}{dx}\right)^2 \;\;=\;\;\left(\frac{x^4}{2} - \frac{x^{\:\text{-}4}}{2}\right)^2 \;\;=\;\;\frac{x^8}{4} - \frac{1}{2} + \frac{x^{\:\text{-}8}}{4}\)
. . \(\displaystyle 1 + \left(\frac{dy}{dx}\right)^2 \;\;=\;\;1 + \frac{x^8}{4} - \frac{1}{2} + \frac{x^{\:\text{-}4}}{4} \;\;=\;\;\frac{x^8}{4} + \frac{1}{2} + \frac{x^{\:\text{-}8}}{4} \;\;=\;\;\left(\frac{x^4}{2} + \frac{x^{\:\text{-}4}}{2}\right)^2\)
. . \(\displaystyle \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \;\;=\;\;\sqrt{\left(\frac{x^4}{2} + \frac{x^{\:\text{-}4}}{2}\right)^2} \;\;=\;\;\frac{x^4}{2}+\frac{x^{\:\text{-}4}}{2} \;\;=\;\;\frac{1}{2}\left(x^4} + x^{\:\text{-}4}\right)\)
\(\displaystyle \text{Therefore: }\;L \;=\;\frac{1}{2}\int^2_1\left(x^4 - x^{\:\text{-}4}\right)\,dx \quad\hdots\:\text{ etc.}\)
Super Moderator
Staff member
Duplicate threads merged.
thank you i was struggling to get through the power part and didnt knew how to go ahead with it. It was really helpful.