\int (e^x-\sqrt x+ \frac{1}{x}+1) dx
S Stud778 New member Joined Jun 10, 2010 Messages 3 Jun 10, 2010 #1 \(\displaystyle \int (e^x-\sqrt x+ \frac{1}{x}+1) dx\)
D Deleted member 4993 Guest Jun 10, 2010 #3 Stud778 said: \(\displaystyle \int (e^x-\sqrt x+ \frac{1}{x}+1) dx\) Click to expand... \(\displaystyle \int (e^x-\sqrt x+ \frac{1}{x}+1) dx \ \ = \ \ \int e^x dx \ \ - \ \ \int \sqrt {x} dx \ \ + \ \ \int \frac{1}{x} dx \ \ + \ \ \int 1dx\)
Stud778 said: \(\displaystyle \int (e^x-\sqrt x+ \frac{1}{x}+1) dx\) Click to expand... \(\displaystyle \int (e^x-\sqrt x+ \frac{1}{x}+1) dx \ \ = \ \ \int e^x dx \ \ - \ \ \int \sqrt {x} dx \ \ + \ \ \int \frac{1}{x} dx \ \ + \ \ \int 1dx\)