\int x^5e^{1-x^6} dx I know u=1-x^6 and du= -6x^5 dx what should be my next step?
S Stud778 New member Joined Jun 10, 2010 Messages 3 Jun 10, 2010 #1 ∫x5e1−x6dx\displaystyle \int x^5e^{1-x^6} dx∫x5e1−x6dx I know u=1−x6\displaystyle u=1-x^6u=1−x6 and du=−6x5dx\displaystyle du= -6x^5 dxdu=−6x5dx what should be my next step?
∫x5e1−x6dx\displaystyle \int x^5e^{1-x^6} dx∫x5e1−x6dx I know u=1−x6\displaystyle u=1-x^6u=1−x6 and du=−6x5dx\displaystyle du= -6x^5 dxdu=−6x5dx what should be my next step?
D Deleted member 4993 Guest Jun 10, 2010 #2 Stud778 said: ∫x5e1−x6dx\displaystyle \int x^5e^{1-x^6} dx∫x5e1−x6dx I know u=1−x6\displaystyle u=1-x^6u=1−x6 and du=−6x5dx\displaystyle du= -6x^5 dxdu=−6x5dx what should be my next step? Click to expand... ∫x5e1−x6dx = ∫e1−x6(x5dx) = ∫eu⋅(−du6)\displaystyle \int x^5e^{1-x^6} dx \ \ = \ \ \int e^{1-x^6} (x^5 dx) \ \ = \ \ \int e^{u} \cdot (-\frac{du}{6})∫x5e1−x6dx = ∫e1−x6(x5dx) = ∫eu⋅(−6du) Now continue....
Stud778 said: ∫x5e1−x6dx\displaystyle \int x^5e^{1-x^6} dx∫x5e1−x6dx I know u=1−x6\displaystyle u=1-x^6u=1−x6 and du=−6x5dx\displaystyle du= -6x^5 dxdu=−6x5dx what should be my next step? Click to expand... ∫x5e1−x6dx = ∫e1−x6(x5dx) = ∫eu⋅(−du6)\displaystyle \int x^5e^{1-x^6} dx \ \ = \ \ \int e^{1-x^6} (x^5 dx) \ \ = \ \ \int e^{u} \cdot (-\frac{du}{6})∫x5e1−x6dx = ∫e1−x6(x5dx) = ∫eu⋅(−6du) Now continue....