Hello,
1) Find the integral of: e^(-x)cos(2x)dx
with integration by parts.
Let u = e^(-x)
du = -e^(-x)dx
dv = cos2xdx
v = 1/2*sin2x
= 1/2 * e^(-x)sin2x + 1/2 * integral of: sin(2x)e^(-x)dx
Let u = e^(-x)
du = -e^(-x)dx
dv = sin2xdx
v = -1/2 * cos2x
= -1/2 * e^(-x)cos(2x) - 1/2 * integral of: cos(2x)e^(-x)dx
At this point i'm not sure what to do. I'm back exactly where I started. Any suggestions?
1) Find the integral of: e^(-x)cos(2x)dx
with integration by parts.
Let u = e^(-x)
du = -e^(-x)dx
dv = cos2xdx
v = 1/2*sin2x
= 1/2 * e^(-x)sin2x + 1/2 * integral of: sin(2x)e^(-x)dx
Let u = e^(-x)
du = -e^(-x)dx
dv = sin2xdx
v = -1/2 * cos2x
= -1/2 * e^(-x)cos(2x) - 1/2 * integral of: cos(2x)e^(-x)dx
At this point i'm not sure what to do. I'm back exactly where I started. Any suggestions?