Re: find the equation of the tan line tothe cardioid r=1+cos
Hello, Smily!
Here's part (a) . . .
(a) Find the equation of the tangent line to the cardioid \(\displaystyle r\:=\:1\,+\,\cos\theta\) at the point \(\displaystyle \theta\,=\,\frac{\pi}{4}\)
You are expected to know the Slope Formula for polar functions:
\(\displaystyle \L\;\;\frac{dy}{dx}\;=\;\frac{r\cdot\cos\theta\,+\,r'\cdot\sin\theta}{-r\cdot\sin\theta\,+\,r'\cdot\cos\theta}\)
We have: \(\displaystyle \,r\:=\:1\,+\,\cos\theta,\;\;r'\:=\:-\sin\theta\)
Then: \(\displaystyle \L\,\frac{dy}{dx}\;=\;\frac{(1\,+\,\cos\theta)\cos\theta\,+\,(-\sin\theta)\sin\theta}{-(1\,+\,\cos\theta)\sin\theta\,+\,(-\sin\theta)\cos\theta} \;=\;\frac{\cos\theta\,+\,\cos^2\theta\,-\,\sin^2\theta}{-\sin\theta\,-\,2sin\theta\cos\theta}\)
\(\displaystyle \;\;\)Hence: \(\displaystyle \L\,\frac{dy}{dx}\;=\;-\frac{\cos\theta\,+\,\cos2\theta}{\sin\theta\,+\,\sin2\theta}\)
At \(\displaystyle \theta\,=\,\frac{\pi}{4}\), we have:
\(\displaystyle \L\;\;\;\frac{dy}{dx} \;= \;-\frac{\cos\frac{\pi}{4}\,+\,\cos\frac{\pi}{2}}{\sin\frac{\pi}{4} \,+ \,\sin\frac{\pi}{2}} \;=\; -\frac{\frac{1}{\sqrt{2}}\,+\,0}{\frac{1}{\sqrt{2}}\,+\,1}\;=\;-\frac{1}{\sqrt{2}\,+\,1}\)
Rationalize: \(\displaystyle \L\,-\frac{1}{\sqrt{2}\,+\,1}\cdot\frac{\sqrt{2}\,-\,1}{\sqrt{2}\,-\,1} \;= \;-\frac{\sqrt{2}\,-\,1}{2\,-\,1}\;=\;-(\sqrt{2}\,-\,1)\;=\;1\,-\,\sqrt{2}\)
And we have the slope of the tangent line . . . can you finish it now?