Find the derivative

G

Guest

Guest
Find f'(x) if it is known that
ddx[f(2x)]=x2\displaystyle \frac{d}{dx}[f(2x)] = x^2

I let u(x) = 2x, then
ddx[f(u)]=dydududx\displaystyle \frac{d}{dx}[f(u)] = \frac{dy}{du} \frac{du}{dx}
ddx[f(2x)]=2dydu\displaystyle \frac{d}{dx}[f(2x)] = 2 \frac{dy}{du}
therefore
dydu=12x2\displaystyle \frac{dy}{du} = \frac{1}{2}x^2
then
f(x)=dydx=dydududx\displaystyle f'(x) = \frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}
=(12x2)(2)\displaystyle = (\frac{1}{2}x^2) (2)
=x2\displaystyle = x^2
why doesn't this work??
 
\(\displaystyle \L
\begin{array}{l}
\frac{d}{{dx}}\left( {f(2x)} \right) = x^2 \\
\frac{d}{{dx}}\left( {f(2x)} \right) = 2f'(2x)\quad \Rightarrow \quad f'(2x) = \frac{{x^2 }}{2} \\
u = 2x\quad \Rightarrow \quad f'(u) = \frac{{u^2 }}{8} \\
f'(x) = \frac{{x^2 }}{8} \\
\end{array}\)
 
Top