Hi I need help with this question, for my exam tomarrow...
find the derivative of \(\displaystyle \L\ f(x)=ln(x^{3}+3x)^{3}\)
\(\displaystyle \L\ f'(x)=\frac{1}{(x^{3}+3x)^{3}}*[ 3(x^{3}+3x)*3x+3]\)
\(\displaystyle \L\ f'(x)=\frac{(3x^{3}+9x)(3x+3)}{(x^{3}+3x)^{3}}\)
\(\displaystyle \L\ f'(x)=\frac{3(x^{3}+3x)(3x+3)}{(x^{3}+3x)^{3}}\)
\(\displaystyle \L\ f'(x)=\frac{9(x+1)}{(x^{3}+3x)^{2}}\)
what did I do wrong? Thanks
find the derivative of \(\displaystyle \L\ f(x)=ln(x^{3}+3x)^{3}\)
\(\displaystyle \L\ f'(x)=\frac{1}{(x^{3}+3x)^{3}}*[ 3(x^{3}+3x)*3x+3]\)
\(\displaystyle \L\ f'(x)=\frac{(3x^{3}+9x)(3x+3)}{(x^{3}+3x)^{3}}\)
\(\displaystyle \L\ f'(x)=\frac{3(x^{3}+3x)(3x+3)}{(x^{3}+3x)^{3}}\)
\(\displaystyle \L\ f'(x)=\frac{9(x+1)}{(x^{3}+3x)^{2}}\)
what did I do wrong? Thanks