Find the arc length of the parametric curve.

hank

Junior Member
Joined
Sep 13, 2006
Messages
209
x = cos^3 t y = sin^3 t and z = 2; 0 <= t <= pi/2

r'(t) = < -3sin^2 t, 3cos^2 t, 0>

||r'(t)|| = sqrt[(-3sin^2 t)^2 + (3cos^2 t)^2 + 0^2]
||r'(t)|| = sqrt[9sin^4 t + 9cos^4 t]
||r'(t)|| = 3 * sqrt[sin^4 t + cos^4 t]

And, this is where I get stuck.
I suspect that sin^4 t + cos^4 t can be reduced to some nice square rootable function, but I can't see it.
Is there something else I can do here? Help?
 
dxdt=3sin(t)cos2(t),   dydt=3sin2(t)cos(t),   dzdt=0\displaystyle \frac{dx}{dt}=-3sin(t)cos^{2}(t), \;\ \frac{dy}{dt}=3sin^{2}(t)cos(t), \;\ \frac{dz}{dt}=0

9sin2(t)cos4(t)+9sin4(t)cos2(t)=3sin2(t)cos2(t)(cos2(t)+sin2(t)equals 1)\displaystyle \sqrt{9sin^{2}(t)cos^{4}(t)+9sin^{4}(t)cos^{2}(t)}=3\sqrt{sin^{2}(t)cos^{2}(t)\underbrace{(cos^{2}(t)+sin^{2}(t)}_{\text{equals 1}})}

=3sin(t)cos(t)dt\displaystyle =\int{3sin(t)cos(t)}dt

But, for your info sin4(t)+cos4(t)=14(cos(4t)+3)\displaystyle sin^{4}(t)+cos^{4}(t)=\frac{1}{4}(cos(4t)+3)
 
Top