Hello, greatwhiteshark!
As stated, the problem doesn't make sense,
but I think I've figured out what was <u>meant</u>.
From a glider 200 feet above the ground, two sightings of a stationary object
directly in front are taken 1 minute apart.
The sighting is an angle of elevation of 10<sup>o</sup> and the second angle of elevation is 40<sup>o</sup>.
What is the speed of the glider?
The object cannot be "directly in front".
. . If it was, the angles of elevation would 0<sup>o</sup>.
If the pilot had to look
up to see the object, the 200-foot altitude is meaningless.
. . [He might as well be taxiing on the ground.]
I believe the object is 'directly in front' but
on the ground,
. . and those angles are angles of
depression.
Code:
A x B y D
* - - - - - * - - - - - + The object is at C.
| * 10d *40d : The glider was at A.
| * * :
200 | * * : 200 One minute later,
| * * : it is at B.
| * * :
- - + - - - - - - - - - - - * - Let AB = x (feet)
C Let BD = y.
. . . . . . . . . . . . . . . . . . . . . . . . . . . .200
. . . . . . . . . . . . 200
In right triangle BDC:
. tan 40<sup>o</sup>
.=
.-----
. . --->
. . y = ----------
. [1]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .y
. . . . . . . . . . . . tan 40<sup>o</sup>
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
. . . . . . . . . . . . . .200
In right triangle ADC:
. tan 10<sup>o</sup>
.=
.-------
. . --->
. . y
.=
.---------- - x
. [2]
. . . . . . . . . . . . . . . . . . . . . . . . . . . .x + y
. . . . . . . . . . . . tan 10<sup>o</sup>
. . . . . . . . . . . . . . . . . . .200
. . . . . . . .200
Equate
[1] and
[2]:
. ----------
. =
. ---------- - x
. . . . . . . . . . . . . . . . . .tan 40<sup>o</sup>
. . . . tan 10<sup>o</sup>
. . . . . . . . . . . . . . . . . 200
. . . . .200
Solve for x:
. x
. =
. ---------- - ----------
. =
. 895.905645
. . . . . . . . . . . . . . . .tan 10<sup>o</sup>
. .tan 40<sup>o</sup>
Hence, in one minute, the glider flew 895.9 feet.
In one hour, it would fly:
.60 x 895.9 = 53,754 feet.
. . . That equals:
.53,754 ÷ 5280
.=
.10.18 miles
Therefore, the glider's speed is about
10.18 mph
[As always, someone check my work ... please!]