alexarosea
New member
- Joined
- Oct 27, 2018
- Messages
- 1
I don't understand the hint, but I found that S is 31 and T is -5. I just don't know what to do next, and my sheets from my professor aren't helping..
Find the smallest positive integer [FONT=MathJax_Math]x[/FONT] that solves the congruence:
Find the smallest positive integer [FONT=MathJax_Math]x[/FONT] that solves the congruence:
[FONT=MathJax_Main]11
[FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]≡[/FONT][FONT=MathJax_Main]6[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Main]mod[/FONT][FONT=MathJax_Main]68[/FONT][FONT=MathJax_Main])[/FONT]
(Hint: From running the Euclidean algorithm forwards and backwards we get
(Hint: From running the Euclidean algorithm forwards and backwards we get [FONT=MathJax_Main]1[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Math]s[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Main]11[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Math]t[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Main]68[/FONT][FONT=MathJax_Main])[/FONT]. Find [FONT=MathJax_Math]s[/FONT] and use it to solve the congruence.)[/FONT](Hint: From running the Euclidean algorithm forwards and backwards we get