Find points where f(x) = 4sinx + 2x has a horizontal tangent

Re: help me

Hello, Brian!

Find points where f(x)=4sinx+2x\displaystyle f(x)\:=\:4\sin x\,+\,2x has a horizontal tangent, 0x2π\displaystyle 0\,\leq\,x\,\leq\, 2\pi

Horizontal tangents occur where f(x)=0\displaystyle f'(x)\,=\,0

We have: 4cosx+2=0        cosx=12\displaystyle \:4\cos x\,+\,2\:=\:0\;\;\Rightarrow\;\;\cos x\,=\,-\frac{1}{2}

Therefore: x=2π3,4π3\displaystyle \:x\:=\:\frac{2\pi}{3},\:\frac{4\pi}{3}

 
Top