Find points where f(x)= 4sinX+2x has a horizontal tangent 10<=x<=2(pi)
B brian ravenell New member Joined Sep 24, 2006 Messages 1 Sep 24, 2006 #1 Find points where f(x)= 4sinX+2x has a horizontal tangent 10<=x<=2(pi)
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 Sep 24, 2006 #2 Re: help me Hello, Brian! Find points where \(\displaystyle f(x)\:=\:4\sin x\,+\,2x\) has a horizontal tangent, \(\displaystyle 0\,\leq\,x\,\leq\, 2\pi\) Click to expand... Horizontal tangents occur where \(\displaystyle f'(x)\,=\,0\) We have: \(\displaystyle \:4\cos x\,+\,2\:=\:0\;\;\Rightarrow\;\;\cos x\,=\,-\frac{1}{2}\) Therefore: \(\displaystyle \:x\:=\:\frac{2\pi}{3},\:\frac{4\pi}{3}\)
Re: help me Hello, Brian! Find points where \(\displaystyle f(x)\:=\:4\sin x\,+\,2x\) has a horizontal tangent, \(\displaystyle 0\,\leq\,x\,\leq\, 2\pi\) Click to expand... Horizontal tangents occur where \(\displaystyle f'(x)\,=\,0\) We have: \(\displaystyle \:4\cos x\,+\,2\:=\:0\;\;\Rightarrow\;\;\cos x\,=\,-\frac{1}{2}\) Therefore: \(\displaystyle \:x\:=\:\frac{2\pi}{3},\:\frac{4\pi}{3}\)