Let a point on \(\displaystyle y=x^{2}\) be \(\displaystyle A(a,a^{2})\)
Let a point on \(\displaystyle -(x-6)^{2}\) be \(\displaystyle B(b,-(b-6)^{2})\)
The distance formula is \(\displaystyle d=(a-b)^{2}+(a^{2}+(b-6)^{2})^{2}\)
Now, set \(\displaystyle \frac{{\partial}d}{{\partial}a}=0\) and \(\displaystyle \frac{{\partial}d}{{\partial}b}=0\)
\(\displaystyle \frac{{\partial}d}{{\partial}a}=4a^{3}+2a(2b^{2}-24b+73)-2b=0\)........[1]
\(\displaystyle \frac{{\partial}d}{{\partial}b}=4b^{3}-72b^{2}+2b(2a^{2}+217)-24a^{2}-2a-864=0\)........[2]
Now, can you solve for a and b?.