Find Limit as x approaches 0 (4sin x+2x)/(5x), if it exists

Re: Limits

limx04sin(x)+2x5x\displaystyle \lim_{x\to 0}\frac{4sin(x)+2x}{5x}

Expand it out and make use of the famous limit:

limx0sin(x)x=1\displaystyle \lim_{x\to 0}\frac{sin(x)}{x}=1

We get:

45limx0sin(x)x+25\displaystyle \frac{4}{5}\lim_{x\to 0}\frac{sin(x)}{x}+\frac{2}{5}

Now, see it?.
 
Top