Find Limit as x approaches 0 (4sin x+2x)/(5x), if it exists

Re: Limits

\(\displaystyle \lim_{x\to 0}\frac{4sin(x)+2x}{5x}\)

Expand it out and make use of the famous limit:

\(\displaystyle \lim_{x\to 0}\frac{sin(x)}{x}=1\)

We get:

\(\displaystyle \frac{4}{5}\lim_{x\to 0}\frac{sin(x)}{x}+\frac{2}{5}\)

Now, see it?.
 
Top