Find the limit, if it exists. Limit as x approaches 0 (4sin x+2x)/(5x)
C calculusqueen New member Joined May 20, 2009 Messages 5 May 20, 2009 #1 Find the limit, if it exists. Limit as x approaches 0 (4sin x+2x)/(5x)
G galactus Super Moderator Staff member Joined Sep 28, 2005 Messages 7,216 May 20, 2009 #2 Re: Limits limx→04sin(x)+2x5x\displaystyle \lim_{x\to 0}\frac{4sin(x)+2x}{5x}x→0lim5x4sin(x)+2x Expand it out and make use of the famous limit: limx→0sin(x)x=1\displaystyle \lim_{x\to 0}\frac{sin(x)}{x}=1x→0limxsin(x)=1 We get: 45limx→0sin(x)x+25\displaystyle \frac{4}{5}\lim_{x\to 0}\frac{sin(x)}{x}+\frac{2}{5}54x→0limxsin(x)+52 Now, see it?.
Re: Limits limx→04sin(x)+2x5x\displaystyle \lim_{x\to 0}\frac{4sin(x)+2x}{5x}x→0lim5x4sin(x)+2x Expand it out and make use of the famous limit: limx→0sin(x)x=1\displaystyle \lim_{x\to 0}\frac{sin(x)}{x}=1x→0limxsin(x)=1 We get: 45limx→0sin(x)x+25\displaystyle \frac{4}{5}\lim_{x\to 0}\frac{sin(x)}{x}+\frac{2}{5}54x→0limxsin(x)+52 Now, see it?.