Find limit as x->0 of tan(ax)/sin(bx)

tan(ax)sin(bx)abxabx=\displaystyle \frac{\tan(ax)}{\sin(bx)} \cdot \frac{abx}{abx} =

tan(ax)abxabxsin(bx)=\displaystyle \frac{\tan(ax)}{abx} \cdot \frac{abx}{\sin(bx)} =

abtan(ax)axbxsin(bx)\displaystyle \frac{a}{b} \cdot \frac{\tan(ax)}{ax} \cdot \frac{bx}{\sin(bx)}

now take the limit as x -> 0.
 
Top