TangoFoxtrotGolf
New member
- Joined
- Jan 11, 2009
- Messages
- 10
Let f(n) = n[sup:2bpiakor]2[/sup:2bpiakor] - n + 2
Find a value for k such that the equation
f(n[sup:2bpiakor]2[/sup:2bpiakor] + k) = f(n) X f(n + 1)
holds for all values of n.
f(n[sup:2bpiakor]2[/sup:2bpiakor] + k) = (n[sup:2bpiakor]2[/sup:2bpiakor] + k)[sup:2bpiakor]2[/sup:2bpiakor] - (n[sup:2bpiakor]2[/sup:2bpiakor] + k) + 2
f(n[sup:2bpiakor]2[/sup:2bpiakor] + k) = (n[sup:2bpiakor]4[/sup:2bpiakor] + 2kn[sup:2bpiakor]2[/sup:2bpiakor] + k[sup:2bpiakor]2[/sup:2bpiakor]) - (n[sup:2bpiakor]2[/sup:2bpiakor] + k) + 2
f(n[sup:2bpiakor]2[/sup:2bpiakor] + k) = n[sup:2bpiakor]4[/sup:2bpiakor] + 2kn[sup:2bpiakor]2[/sup:2bpiakor] + k[sup:2bpiakor]2[/sup:2bpiakor] - n[sup:2bpiakor]2[/sup:2bpiakor] - k + 2
f(n[sup:2bpiakor]2[/sup:2bpiakor] + k) = n[sup:2bpiakor]4[/sup:2bpiakor] + 2kn[sup:2bpiakor]2[/sup:2bpiakor] - n[sup:2bpiakor]2[/sup:2bpiakor] + k[sup:2bpiakor]2[/sup:2bpiakor] - k + 2
f(n + 1) = (n + 1)[sup:2bpiakor]2[/sup:2bpiakor] - (n + 1) + 2
f(n + 1) = (n[sup:2bpiakor]2[/sup:2bpiakor] + 2n + 1) - (n + 1) + 2
f(n + 1) = n[sup:2bpiakor]2[/sup:2bpiakor] + 2n + 1 - n - 1 + 2
f(n + 1) = n[sup:2bpiakor]2[/sup:2bpiakor] + n + 2
f(n) X f(n + 1) = (n[sup:2bpiakor]2[/sup:2bpiakor] - n + 2)(n[sup:2bpiakor]2[/sup:2bpiakor] + n + 2)
f(n) X f(n + 1) = n[sup:2bpiakor]4[/sup:2bpiakor] + 3n[sup:2bpiakor]2[/sup:2bpiakor] + 4
Therefore,
n[sup:2bpiakor]4[/sup:2bpiakor] + 2kn[sup:2bpiakor]2[/sup:2bpiakor] - n[sup:2bpiakor]2[/sup:2bpiakor] + k[sup:2bpiakor]2[/sup:2bpiakor] - k + 2 = n[sup:2bpiakor]4[/sup:2bpiakor] + 3n[sup:2bpiakor]2[/sup:2bpiakor] + 4
n[sup:2bpiakor]4[/sup:2bpiakor] + 2kn[sup:2bpiakor]2[/sup:2bpiakor] - n[sup:2bpiakor]2[/sup:2bpiakor] + k[sup:2bpiakor]2[/sup:2bpiakor] - k + 2 - n[sup:2bpiakor]4[/sup:2bpiakor] = n[sup:2bpiakor]4[/sup:2bpiakor] + 3n[sup:2bpiakor]2[/sup:2bpiakor] + 4 - n[sup:2bpiakor]4[/sup:2bpiakor]
2kn[sup:2bpiakor]2[/sup:2bpiakor] - n[sup:2bpiakor]2[/sup:2bpiakor] + k[sup:2bpiakor]2[/sup:2bpiakor] - k + 2 = 3n[sup:2bpiakor]2[/sup:2bpiakor] + 4
2kn[sup:2bpiakor]2[/sup:2bpiakor] - n[sup:2bpiakor]2[/sup:2bpiakor] + k[sup:2bpiakor]2[/sup:2bpiakor] - k + 2 + n[sup:2bpiakor]2[/sup:2bpiakor] = 3n[sup:2bpiakor]2[/sup:2bpiakor] + 4 + n[sup:2bpiakor]2[/sup:2bpiakor]
2kn[sup:2bpiakor]2[/sup:2bpiakor] + k[sup:2bpiakor]2[/sup:2bpiakor] - k + 2 = 4n[sup:2bpiakor]2[/sup:2bpiakor] + 4
2kn[sup:2bpiakor]2[/sup:2bpiakor] + k[sup:2bpiakor]2[/sup:2bpiakor] - k + 2 - 4 = 4n[sup:2bpiakor]2[/sup:2bpiakor] + 4 - 4
2kn[sup:2bpiakor]2[/sup:2bpiakor] + k[sup:2bpiakor]2[/sup:2bpiakor] - k - 2 = 4n[sup:2bpiakor]2[/sup:2bpiakor]
2kn[sup:2bpiakor]2[/sup:2bpiakor] + k[sup:2bpiakor]2[/sup:2bpiakor] - k - 2 - 2kn[sup:2bpiakor]2[/sup:2bpiakor] = 4n[sup:2bpiakor]2[/sup:2bpiakor] - 2kn[sup:2bpiakor]2[/sup:2bpiakor]
k[sup:2bpiakor]2[/sup:2bpiakor] - k - 2 = 4n[sup:2bpiakor]2[/sup:2bpiakor] - 2kn[sup:2bpiakor]2[/sup:2bpiakor]
k[sup:2bpiakor]2[/sup:2bpiakor] - k - 2 = 2n[sup:2bpiakor]2[/sup:2bpiakor](1 - k)
k[sup:2bpiakor]2[/sup:2bpiakor] - k - 2 = 2n[sup:2bpiakor]2[/sup:2bpiakor](-k + 1)
(k - 2)(k + 1) = 2n[sup:2bpiakor]2[/sup:2bpiakor](-k + 1)
I guess that I hoped to find some factor to divide both sides by to reduce further.
I did make several attempts to multiply both sides by -1 trying to get one of the factors on the left-hand side to be the same as the parenthetic factor on the right-hand side. But, none of those attempts yielded a factor that would divide out.
I don't see where to proceed from here?
Or, if I made a mistake early on?
Any help greatly appreciated.
Find a value for k such that the equation
f(n[sup:2bpiakor]2[/sup:2bpiakor] + k) = f(n) X f(n + 1)
holds for all values of n.
f(n[sup:2bpiakor]2[/sup:2bpiakor] + k) = (n[sup:2bpiakor]2[/sup:2bpiakor] + k)[sup:2bpiakor]2[/sup:2bpiakor] - (n[sup:2bpiakor]2[/sup:2bpiakor] + k) + 2
f(n[sup:2bpiakor]2[/sup:2bpiakor] + k) = (n[sup:2bpiakor]4[/sup:2bpiakor] + 2kn[sup:2bpiakor]2[/sup:2bpiakor] + k[sup:2bpiakor]2[/sup:2bpiakor]) - (n[sup:2bpiakor]2[/sup:2bpiakor] + k) + 2
f(n[sup:2bpiakor]2[/sup:2bpiakor] + k) = n[sup:2bpiakor]4[/sup:2bpiakor] + 2kn[sup:2bpiakor]2[/sup:2bpiakor] + k[sup:2bpiakor]2[/sup:2bpiakor] - n[sup:2bpiakor]2[/sup:2bpiakor] - k + 2
f(n[sup:2bpiakor]2[/sup:2bpiakor] + k) = n[sup:2bpiakor]4[/sup:2bpiakor] + 2kn[sup:2bpiakor]2[/sup:2bpiakor] - n[sup:2bpiakor]2[/sup:2bpiakor] + k[sup:2bpiakor]2[/sup:2bpiakor] - k + 2
f(n + 1) = (n + 1)[sup:2bpiakor]2[/sup:2bpiakor] - (n + 1) + 2
f(n + 1) = (n[sup:2bpiakor]2[/sup:2bpiakor] + 2n + 1) - (n + 1) + 2
f(n + 1) = n[sup:2bpiakor]2[/sup:2bpiakor] + 2n + 1 - n - 1 + 2
f(n + 1) = n[sup:2bpiakor]2[/sup:2bpiakor] + n + 2
f(n) X f(n + 1) = (n[sup:2bpiakor]2[/sup:2bpiakor] - n + 2)(n[sup:2bpiakor]2[/sup:2bpiakor] + n + 2)
f(n) X f(n + 1) = n[sup:2bpiakor]4[/sup:2bpiakor] + 3n[sup:2bpiakor]2[/sup:2bpiakor] + 4
Therefore,
n[sup:2bpiakor]4[/sup:2bpiakor] + 2kn[sup:2bpiakor]2[/sup:2bpiakor] - n[sup:2bpiakor]2[/sup:2bpiakor] + k[sup:2bpiakor]2[/sup:2bpiakor] - k + 2 = n[sup:2bpiakor]4[/sup:2bpiakor] + 3n[sup:2bpiakor]2[/sup:2bpiakor] + 4
n[sup:2bpiakor]4[/sup:2bpiakor] + 2kn[sup:2bpiakor]2[/sup:2bpiakor] - n[sup:2bpiakor]2[/sup:2bpiakor] + k[sup:2bpiakor]2[/sup:2bpiakor] - k + 2 - n[sup:2bpiakor]4[/sup:2bpiakor] = n[sup:2bpiakor]4[/sup:2bpiakor] + 3n[sup:2bpiakor]2[/sup:2bpiakor] + 4 - n[sup:2bpiakor]4[/sup:2bpiakor]
2kn[sup:2bpiakor]2[/sup:2bpiakor] - n[sup:2bpiakor]2[/sup:2bpiakor] + k[sup:2bpiakor]2[/sup:2bpiakor] - k + 2 = 3n[sup:2bpiakor]2[/sup:2bpiakor] + 4
2kn[sup:2bpiakor]2[/sup:2bpiakor] - n[sup:2bpiakor]2[/sup:2bpiakor] + k[sup:2bpiakor]2[/sup:2bpiakor] - k + 2 + n[sup:2bpiakor]2[/sup:2bpiakor] = 3n[sup:2bpiakor]2[/sup:2bpiakor] + 4 + n[sup:2bpiakor]2[/sup:2bpiakor]
2kn[sup:2bpiakor]2[/sup:2bpiakor] + k[sup:2bpiakor]2[/sup:2bpiakor] - k + 2 = 4n[sup:2bpiakor]2[/sup:2bpiakor] + 4
2kn[sup:2bpiakor]2[/sup:2bpiakor] + k[sup:2bpiakor]2[/sup:2bpiakor] - k + 2 - 4 = 4n[sup:2bpiakor]2[/sup:2bpiakor] + 4 - 4
2kn[sup:2bpiakor]2[/sup:2bpiakor] + k[sup:2bpiakor]2[/sup:2bpiakor] - k - 2 = 4n[sup:2bpiakor]2[/sup:2bpiakor]
2kn[sup:2bpiakor]2[/sup:2bpiakor] + k[sup:2bpiakor]2[/sup:2bpiakor] - k - 2 - 2kn[sup:2bpiakor]2[/sup:2bpiakor] = 4n[sup:2bpiakor]2[/sup:2bpiakor] - 2kn[sup:2bpiakor]2[/sup:2bpiakor]
k[sup:2bpiakor]2[/sup:2bpiakor] - k - 2 = 4n[sup:2bpiakor]2[/sup:2bpiakor] - 2kn[sup:2bpiakor]2[/sup:2bpiakor]
k[sup:2bpiakor]2[/sup:2bpiakor] - k - 2 = 2n[sup:2bpiakor]2[/sup:2bpiakor](1 - k)
k[sup:2bpiakor]2[/sup:2bpiakor] - k - 2 = 2n[sup:2bpiakor]2[/sup:2bpiakor](-k + 1)
(k - 2)(k + 1) = 2n[sup:2bpiakor]2[/sup:2bpiakor](-k + 1)
I guess that I hoped to find some factor to divide both sides by to reduce further.
I did make several attempts to multiply both sides by -1 trying to get one of the factors on the left-hand side to be the same as the parenthetic factor on the right-hand side. But, none of those attempts yielded a factor that would divide out.
I don't see where to proceed from here?
Or, if I made a mistake early on?
Any help greatly appreciated.