find g' for g=sqrt[tan(sqrt(x))+x) + sqrt(x^2+sin(e^(2x)))]

jjedlicka

New member
Joined
Oct 22, 2007
Messages
3
Help with take home test: I need help finding the derivative of this fuction

g(x)=sqrttan((sqrt(x))+x)+sqrt(x2+sin(e2x))\displaystyle g(x)=sqrt{tan((sqrt({x}))+x)+sqrt{(x^2+sin(e^{2x}))}}
 
Re: find g' for g=sqrt[tan(sqrt(x))+x) + sqrt(x^2+sin(e^(2x)

jjedlicka said:
Help with take home test: I need help finding the derivative of this fuction

g(x)=sqrttan((sqrt(x))+x)+sqrt(x2+sin(e2x))\displaystyle g(x)=sqrt{tan((sqrt({x}))+x)+sqrt{(x^2+sin(e^{2x}))}}

This is a test - are you supposed to seek help??

Show your work and excatly where you are stuck - we might be able to "unstuck" you without compromising the test.
 
Its a pratice test...
I get the answer
(tan(x1/2+x)+(x2+sin(e2x))1/2)1/2\displaystyle (tan(x^{1/2}+x)+(x^2+sin(e^{2x}))^{1/2})^{1/2}

1/2(tan(x1/2+x)+(x2+sin(e2x))1/2)1/2\displaystyle 1/2(tan(x^{1/2}+x)+(x^2+sin(e^{2x}))^{1/2})^{-1/2}

1/2(sec2(x1/2+x)+1/2(x2+sin(e2x))1/2)1/2\displaystyle 1/2(sec^2(x^{1/2}+x)+1/2(x^2+sin(e^{2x})) ^{-1/2})^{-1/2}

1/2(sec2(x1/2+x)+1/2(2x+cos(e2x))1/2)1/2\displaystyle 1/2(sec^2(x^{1/2}+x)+1/2(2x+cos(e^{2x}))^{-1/2})^{-1/2}

g(x)=1/2(sec2(1/2x1/2+1)+1/2(2x+cos(e2x)2xe2x)1/2)1/2\displaystyle g'(x)=1/2(sec^2(1/2x^{-1/2}+1)+1/2(2x+cos(e^{2x})2xe^{2x})^{-1/2})^{-1/2}
 
jjedlicka said:
Its a pratice test...
I get the answer
(tan(x1/2+x)+(x2+sin(e2x))1/2)1/2\displaystyle (tan(x^{1/2}+x)+(x^2+sin(e^{2x}))^{1/2})^{1/2}

1/2(tan(x1/2+x)+(x2+sin(e2x))1/2)1/2\displaystyle 1/2(tan(x^{1/2}+x)+(x^2+sin(e^{2x}))^{1/2})^{-1/2}

1/2(sec2(x1/2+x)+1/2(x2+sin(e2x))1/2)1/2\displaystyle 1/2(sec^2(x^{1/2}+x)+1/2(x^2+sin(e^{2x})) ^{-1/2})^{-1/2}

1/2(sec2(x1/2+x)+1/2(2x+cos(e2x))1/2)1/2\displaystyle 1/2(sec^2(x^{1/2}+x)+1/2(2x+cos(e^{2x}))^{-1/2})^{-1/2}

g(x)=1/2(sec2(1/2x1/2+1)+1/2(2x+cos(e2x)2xe2x)1/2)1/2\displaystyle g'(x)=1/2(sec^2(1/2x^{-1/2}+1)+1/2(2x+cos(e^{2x})2xe^{2x})^{-1/2})^{-1/2}

That is not correct - you need to apply cahin rule - several times.
 
Top