Find the extreme values of [MATH]f(x,y)=xy[/MATH] with the constraint [MATH]g(x,y)=9x^2+4y^2-36=0[/MATH].
Solution: Using Lagrange multipliers, we first find the first partial derivatives
[MATH]f_x = y, g_x = 18x \\ f_y = x, g_y = 8y[/MATH]
Then solve the system (equations 1, 2, and 3, respectively)
[MATH]y = \lambda \cdot 18x \\ x = \lambda \cdot 8y \\ 9x^2+4y^2-36=0[/MATH]
Wolfram Alpha says the solution is the points
[MATH]\left(\frac{6}{\sqrt{13}}, \frac{6}{\sqrt{13}}\right), \left(-\frac{6}{\sqrt{13}}, -\frac{6}{\sqrt{13}}\right).[/MATH]Both points are for when [MATH]\lambda[/MATH] is 1 and 3.
The solution to the problem says the points are Maximum at points
[MATH]\left(\sqrt 2, \frac{3}{\sqrt 2}\right), \left(-\sqrt 2, -\frac{3}{\sqrt 2}\right)[/MATH]and Minimum at points
[MATH]\left(\sqrt 2, -\frac{3}{\sqrt 2}\right), \left(-\sqrt 2, \frac{3}{\sqrt 2}\right).[/MATH]
I can't get either of those answers. And how can [MATH]\lambda[/MATH] equal either 1 or -1? The best I can do is subtract equation 2 from eqn 1 and get to
[MATH](y-x) + 2\lambda(4y-9x) = 0.[/MATH] But I got nothing from there.
Solution: Using Lagrange multipliers, we first find the first partial derivatives
[MATH]f_x = y, g_x = 18x \\ f_y = x, g_y = 8y[/MATH]
Then solve the system (equations 1, 2, and 3, respectively)
[MATH]y = \lambda \cdot 18x \\ x = \lambda \cdot 8y \\ 9x^2+4y^2-36=0[/MATH]
Wolfram Alpha says the solution is the points
[MATH]\left(\frac{6}{\sqrt{13}}, \frac{6}{\sqrt{13}}\right), \left(-\frac{6}{\sqrt{13}}, -\frac{6}{\sqrt{13}}\right).[/MATH]Both points are for when [MATH]\lambda[/MATH] is 1 and 3.
The solution to the problem says the points are Maximum at points
[MATH]\left(\sqrt 2, \frac{3}{\sqrt 2}\right), \left(-\sqrt 2, -\frac{3}{\sqrt 2}\right)[/MATH]and Minimum at points
[MATH]\left(\sqrt 2, -\frac{3}{\sqrt 2}\right), \left(-\sqrt 2, \frac{3}{\sqrt 2}\right).[/MATH]
I can't get either of those answers. And how can [MATH]\lambda[/MATH] equal either 1 or -1? The best I can do is subtract equation 2 from eqn 1 and get to
[MATH](y-x) + 2\lambda(4y-9x) = 0.[/MATH] But I got nothing from there.