can you help me, please? find exact values for the summation: sigma [ n= to infinity] (n+1)/n!
S spdrmncoo New member Joined Feb 27, 2006 Messages 20 Dec 12, 2006 #1 can you help me, please? find exact values for the summation: sigma [ n= to infinity] (n+1)/n!
pka Elite Member Joined Jan 29, 2005 Messages 11,976 Dec 12, 2006 #2 \(\displaystyle \L \begin{array}{rcl} e^x & = & \sum\limits_{n = 0}^\infty {\frac{{x^n }}{{n!}}} \\ xe^x & = & \sum\limits_{n = 0}^\infty {\frac{{x^{n + 1} }}{{n!}}} \\ e^x + xe^x & = & \sum\limits_{n = 0}^\infty {\frac{{\left( {n + 1} \right)x^n }}{{n!}}} \\ e^x + xe^x - 1 & = & \sum\limits_{n = 1}^\infty {\frac{{\left( {n + 1} \right)x^n }}{{n!}}} \\ x = 1& \quad & \Rightarrow \quad 2e - 1 = \sum\limits_{n = 1}^\infty {\frac{{\left( {n + 1} \right)x^n }}{{n!}}} \\ \end{array}\)
\(\displaystyle \L \begin{array}{rcl} e^x & = & \sum\limits_{n = 0}^\infty {\frac{{x^n }}{{n!}}} \\ xe^x & = & \sum\limits_{n = 0}^\infty {\frac{{x^{n + 1} }}{{n!}}} \\ e^x + xe^x & = & \sum\limits_{n = 0}^\infty {\frac{{\left( {n + 1} \right)x^n }}{{n!}}} \\ e^x + xe^x - 1 & = & \sum\limits_{n = 1}^\infty {\frac{{\left( {n + 1} \right)x^n }}{{n!}}} \\ x = 1& \quad & \Rightarrow \quad 2e - 1 = \sum\limits_{n = 1}^\infty {\frac{{\left( {n + 1} \right)x^n }}{{n!}}} \\ \end{array}\)