find equations of hte normal plane and osculating place

maeveoneill

Junior Member
Joined
Sep 24, 2005
Messages
93
find equations of hte normal plane and osculating plane of the curve at the given point: r(t)= <cost t, sin t, ln cos t>, (1,0,0).

so far i have
r(t) = cos ti + sin tj + ln cos tk
r'(t) = -sin ti + cost tj -(sin t/cos t)k

|r'(t)|= sqrt of: (-sin t)^2 + (cos t)^2 + (-sin t /cos t) ^2)
= sqrt of sec^2 t
= sec t

then T(t) = r'(t)/ |r' (t)|= -sin ti + cost j - tank tk / sec t
and T'(t) = (sec t)(-cos ti + sin tj - sec^2tk) + (-sin ti + cos tj - tantk)(sect tant) / sec^2
= - cos ti + sin tj - sec^2 tk - (sin t)(tan t)i + sin t - tan^2t / sec t

is this right os far.. and how can i simplify T'(t) further in order to find |T'(t)|?? thanks!
 
Top