My quiz on Monday requires us to do the long way of finding derivatives, using:
. . . . .f'(x) = lim<sub>h->0</sub> [f(x + h) - f(x)] / h
I used the limit for the equation y = x<sup>3</sup> - 9. I know the derivative is supposed to be y' = 3x<sup>2</sup>, according to the Power Rule. But when I plugged the values into the formula above, it didn't work. Instead, I got y' = x<sup>3</sup> + 3x<sup>2</sup>.
Here's my work:
. . . . .lim<sub>h->0</sub> [(x + h)<sup>3</sup> - (x<sup>3</sup> - 9)] / h
. . . . .lim<sub>h->0</sub> [x<sup>2</sup> + 2xh + h<sup>2</sup>(x + h) - (x<sup>3</sup> - 9)] / h
. . . . .lim<sub>h->0</sub> [x<sup>3</sup> + 3x<sup>2</sup>h + xh<sup>2</sup> + x<sup>2</sup>h + 2xh<sup>2</sup> + h<sup>3</sup>] / h
. . . . .lim<sub>h->0</sub> [x<sup>3</sup> + 3x<sup>2</sup>h + 3xh<sup>2</sup> + h<sup>3</sup>] / h
The h on the bottom cancels out with the h in 3x<sup>2</sup>h, giving me:
. . . . .lim<sub>h->0</sub> x<sup>3</sup> + 3x<sup>2</sup> + 3xh<sup>2</sup> + h<sup>3</sup>
Substitute 0 for the h's, and I get:
. . . . .x<sup>3</sup> + 3x<sup>2</sup>
What did I do wrong?
_______________________
Edited by stapel -- Reason for edit: repairing formatting
. . . . .f'(x) = lim<sub>h->0</sub> [f(x + h) - f(x)] / h
I used the limit for the equation y = x<sup>3</sup> - 9. I know the derivative is supposed to be y' = 3x<sup>2</sup>, according to the Power Rule. But when I plugged the values into the formula above, it didn't work. Instead, I got y' = x<sup>3</sup> + 3x<sup>2</sup>.
Here's my work:
. . . . .lim<sub>h->0</sub> [(x + h)<sup>3</sup> - (x<sup>3</sup> - 9)] / h
. . . . .lim<sub>h->0</sub> [x<sup>2</sup> + 2xh + h<sup>2</sup>(x + h) - (x<sup>3</sup> - 9)] / h
. . . . .lim<sub>h->0</sub> [x<sup>3</sup> + 3x<sup>2</sup>h + xh<sup>2</sup> + x<sup>2</sup>h + 2xh<sup>2</sup> + h<sup>3</sup>] / h
. . . . .lim<sub>h->0</sub> [x<sup>3</sup> + 3x<sup>2</sup>h + 3xh<sup>2</sup> + h<sup>3</sup>] / h
The h on the bottom cancels out with the h in 3x<sup>2</sup>h, giving me:
. . . . .lim<sub>h->0</sub> x<sup>3</sup> + 3x<sup>2</sup> + 3xh<sup>2</sup> + h<sup>3</sup>
Substitute 0 for the h's, and I get:
. . . . .x<sup>3</sup> + 3x<sup>2</sup>
What did I do wrong?
_______________________
Edited by stapel -- Reason for edit: repairing formatting