Hello, IrishGemini88!
If Eliz is correct and the intergral is: \(\displaystyle \;\;\;\L \int^{\;\;\;3}_1\sqrt{1\,+\,\left(x^4\,-\,\frac{1}{2x^2}\right)^2\,}\:dx\)
I see no elementary method for integrating it.
Please give us the
original statement of the problem.
I suspect that the above integral is
not the correct one.
I seriously doubt that
x4−2x21 is the
derivative of
f(x).
It is highly likely that: \(\displaystyle \L\,f(x)\:=\:x^4\,+\,\frac{1}{32x^2}\;\) . . . or something similar.
Then: \(\displaystyle \L\:f'(x)\;=\;4x^3\,-\,\frac{1}{16x^3}\;\;\Rightarrow\;\;[f'(x)]^2\:=\:16x^6\,-\,\frac{1}{2}\,+\,\frac{1}{256x^6}\)
Hence: \(\displaystyle \L\:1\,+\,[f'(x)]^2\;=\;1\,+\,\left(16x^6\,-\,\frac{1}{2}\,+\,\frac{1}{256x^6}\right)\)
\(\displaystyle \L\;\;\:=\:16x^6\,+\,\frac{1}{2}\,+\,\frac{1}{256x^6}\:=\:\left(4x^3\,+\,\frac{1}{16x^3}\right)^2\) . . . a perfect square!
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Over the years, I've seen this type of problem many times.
The length-of-arc intergral is truly awful to integrate
unless they
deliberately choose an
f(x) to be convenient.
A "nice" one is:
f(x)=x3+12x1 . . . even nicer is:
f(x)=cosh(x)