find an equation for the line tangent to the curve

sareen

New member
Joined
Oct 9, 2009
Messages
24
for the parametric curve defined by x=2sin(t) and y=2cos(t)
a) Find the length of the curve for 0?t? ?/2
answer) L=?

Now for part b) find an equation for the line tangent to the curve at the point where t=? /4

How to solve this???
 
sareen said:
for the parametric curve defined by x=2sin(t) and y=2cos(t)
a) Find the length of the curve for 0?t? ?/2
answer) L=?

Just use the arc length formula.

0π2(ddt(2sin(t)))2+(ddt(2cos(t)))2dt\displaystyle \int_{0}^{\frac{\pi}{2}}\sqrt{\left(\frac{d}{dt}(2sin(t))\right)^{2}+\left(\frac{d}{dt}(2cos(t))\right)^{2}}dt

This whittles down to a very easy integral.

Now for part b) find an equation for the line tangent to the curve at the point where t=? /4

How to solve this???

Use dydx=dydtdxdt\displaystyle \frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}

Then, plug in t=π4\displaystyle t=\frac{\pi}{4} to find the slope at that point. You have y=2cos(π4),   x=2sin(π4)\displaystyle y=2cos(\frac{\pi}{4}), \;\ x=2sin(\frac{\pi}{4})Then, use y=mx+b and solve for b.
 
Another way, reverting to rectangular coordinates.\displaystyle Another \ way, \ reverting \ to \ rectangular \ coordinates.

x = 2sin(t), y =2cos(t)      x2+y2 = 4\displaystyle x \ = \ 2sin(t), \ y \ =2cos(t) \ \implies \ x^{2}+y^{2} \ = \ 4

a) C = 2πr = 4π. C4 = 4π4 = π.\displaystyle a) \ C \ = \ 2\pi r \ = \ 4\pi. \ \frac{C}{4} \ = \ \frac{4\pi}{4} \ = \ \pi.

b) At π/4 m =1 and we have the point (2,2)\displaystyle b) \ At \ \pi/4 \ m \ =1 \ and \ we \ have \ the \ point \ (\sqrt2,\sqrt2)

The tangent line is perpendicular to the the line emanating from the origin, so m = 1\displaystyle The \ tangent \ line \ is \ perpendicular \ to \ the \ the \ line \ emanating \ from \ the \ origin, \ so \ m \ = \ -1

with point (2,2) gives equation y = x+22, see graph.\displaystyle with \ point \ (\sqrt2,\sqrt2) \ gives \ equation \ y \ = \ -x+2\sqrt2, \ see \ graph.

[attachment=0:37tv7sqs]ghi.jpg[/attachment:37tv7sqs]
 

Attachments

  • ghi.jpg
    ghi.jpg
    24 KB · Views: 59
Top