Integrate
Junior Member
- Joined
- May 17, 2018
- Messages
- 126
Let [imath]A[/imath] = [imath]\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}[/imath]
Find all matrices [imath]B[/imath] = [imath]\begin{bmatrix} a & b \\ c & d \end{bmatrix}[/imath] such that [imath]AB=BA[/imath]. Then use the results to exhibit (2 × 2) matrices B and C such that AB = BA and AC =/ CA
[imath]\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}[/imath][imath]\begin{bmatrix} a & b \\ c & d \end{bmatrix}[/imath]=[imath]\begin{bmatrix} a & b \\ c & d \end{bmatrix}[/imath][imath]\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}[/imath]
[imath]\begin{bmatrix} a+2c & b+2d \\ 3a+4c & 3b+4d \end{bmatrix}[/imath]=[imath]\begin{bmatrix} a+3b & 2a+4b \\ c+3d & 2c+4b \end{bmatrix}[/imath]
[imath]a+2c = a+3b[/imath] , [imath]b+2d = 2a+4b[/imath]
[imath]3a+4c=c+3d [/imath] , [imath]3b+3d = 2c+4b[/imath]
[imath]2c-3b=0[/imath]
[imath]-2a-3b-d=0[/imath]
[imath]3a+3c-3d=0[/imath]
[imath]3b-2c=0[/imath]
[imath]\begin{bmatrix} 1 & 3/2 & 0 & -1 & 0\\ 1 & 0 & 1 & 1 & -1\\ 0 & 1 & -2/3 & 0 & 0\\ 0 & -3/2 & 1 & 0 & 0 \end{bmatrix}[/imath] [imath]\longrightarrow[/imath] [imath]\begin{bmatrix} 1 & 0 & 1 & -1 & 0\\ 0 & 1 & -2/3 & 0 & 0\\ 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}[/imath] [imath]\longrightarrow[/imath] [imath]b=2/3c[/imath] and [imath]a=-c+d[/imath]
So I understand that I am supposed to plug these in to get [imath]\begin{bmatrix} -c+d & 2/3c \\ c & d\end{bmatrix}[/imath].
I understood that this is what I needed to do, but I am not sure why it works.
For the second part of this question I don't even know what it wants. Just pick a random matrix for C?
Find all matrices [imath]B[/imath] = [imath]\begin{bmatrix} a & b \\ c & d \end{bmatrix}[/imath] such that [imath]AB=BA[/imath]. Then use the results to exhibit (2 × 2) matrices B and C such that AB = BA and AC =/ CA
[imath]\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}[/imath][imath]\begin{bmatrix} a & b \\ c & d \end{bmatrix}[/imath]=[imath]\begin{bmatrix} a & b \\ c & d \end{bmatrix}[/imath][imath]\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}[/imath]
[imath]\begin{bmatrix} a+2c & b+2d \\ 3a+4c & 3b+4d \end{bmatrix}[/imath]=[imath]\begin{bmatrix} a+3b & 2a+4b \\ c+3d & 2c+4b \end{bmatrix}[/imath]
[imath]a+2c = a+3b[/imath] , [imath]b+2d = 2a+4b[/imath]
[imath]3a+4c=c+3d [/imath] , [imath]3b+3d = 2c+4b[/imath]
[imath]2c-3b=0[/imath]
[imath]-2a-3b-d=0[/imath]
[imath]3a+3c-3d=0[/imath]
[imath]3b-2c=0[/imath]
[imath]\begin{bmatrix} 1 & 3/2 & 0 & -1 & 0\\ 1 & 0 & 1 & 1 & -1\\ 0 & 1 & -2/3 & 0 & 0\\ 0 & -3/2 & 1 & 0 & 0 \end{bmatrix}[/imath] [imath]\longrightarrow[/imath] [imath]\begin{bmatrix} 1 & 0 & 1 & -1 & 0\\ 0 & 1 & -2/3 & 0 & 0\\ 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}[/imath] [imath]\longrightarrow[/imath] [imath]b=2/3c[/imath] and [imath]a=-c+d[/imath]
So I understand that I am supposed to plug these in to get [imath]\begin{bmatrix} -c+d & 2/3c \\ c & d\end{bmatrix}[/imath].
I understood that this is what I needed to do, but I am not sure why it works.
For the second part of this question I don't even know what it wants. Just pick a random matrix for C?