\(\displaystyle f_{n+1}f_{n-1}-f_{n}^{2}=(-1)^{n}\)
Do you have to use induction?. This proof can be done by using determinants of matrices.
But, going with induction.
We have to show that if \(\displaystyle f_{n+1}f_{n-1}-f_{n}^{2}=(-1)^{n}\) is true, then
\(\displaystyle f_{n+2}f_{n}-f_{n+1}^{2}=(-1)^{n+1}\) is true as well.
I will skip the n=1 case and all that.
Start with:
\(\displaystyle f_{n+1}\underbrace{\left(f_{n+1}-f_{n}\right)}_{\text{f(n-1)}}-f_{n}^{2}=(-1)^{n}\).
\(\displaystyle f_{n+1}^{2}-f_{n}f_{n+1}-f_{n}^{2}=(-1)^{n}\)
\(\displaystyle f_{n+1}^{2}-f_{n}\underbrace{\left(f_{n+1}+f_{n}\right)}_{\text{f(n+2)}}=(-1)^{n}\)
\(\displaystyle f_{n+1}^{2}-f_{n}f_{n+2}=(-1)^{n}\)
\(\displaystyle f_{n}f_{n+2}-f_{n+1}^{2}=-(-1)^{n}\)
\(\displaystyle f_{n+2}f_{n}-f_{n+1}^{2}=(-1)^{n+1}\)
To use the determinant method:
\(\displaystyle \begin{pmatrix}1&1\\1&0\end{pmatrix}^{n}=\begin{pmatrix}f_{n+1}&f_{n}\\f_{n}&f_{n+1}\end{pmatrix}\)
Take the determinant of both sides. If two square matrices have the same size, then \(\displaystyle det(AB)=det(A)\cdot det(B)\)