Do you know sigma notation?
\(\displaystyle (a + b)^n = \displaystyle \sum_{i=0}^n\binom{n}{i}a^{(n-i)}b^{i} =\left(\sum_{i=0}^n\dfrac{n!}{i! * (n-i)!} * a^{(n-i)}b^i\right).\)
So
\(\displaystyle (a + b)^0 = \displaystyle \left(\sum_{i=0}^0\dfrac{n!}{i! * (n - i)!} * a^{(n-i)}b^i\right) = \dfrac{0!}{0! * (0 - 0)!} * a^{(0 - 0)}b^0 = \dfrac{1}{1 * 1} * 1 * 1 = 1.\)
\(\displaystyle (a + b)^1 = \displaystyle \left(\sum_{i=0}^1\dfrac{n!}{i! * (1-n)!} * a^{(n-i)}b^i\right) = \left(\dfrac{1!}{0! * (1 - 0)!} * a^{(1-0)}b^0\right)+ \left(\dfrac{1!}{1! * (1 - 1)!} * a^{(1-1)}b^1\right) = a + b.\)
\(\displaystyle (a + b)^2 = \displaystyle \left(\sum_{i=0}^2\dfrac{n!}{i! * (n-i)!} * a^{(n-i)}b^i\right) \implies\)
\(\displaystyle (a + b)^2 = \displaystyle \left(\dfrac{n!}{0! * (2 - 0)!} * a^{(2-0)}b^0\right)+ \left(\dfrac{2!}{1! * (2 - 1)!} * a^{(2 - 1)}b^1\right) + \left(\dfrac{2!}{2! * (2 - 2)!} * a^{(2-2)}b^2\right) = a^2 +2ab + b^2.\)
\(\displaystyle (a + b)^3 = \displaystyle \left(\sum_{i=0}^3\dfrac{n!}{i! * (n-i)!} * a^{(n-i)}b^i\right) \implies\)
\(\displaystyle (a + b)^3 = \displaystyle \left(\dfrac{3!}{0! * (3 - 0)!} * a^{(3-0)}b^0\right)+ \left(\dfrac{3!}{1! * (3 - 1)!} * a^{(3 - 1)}b^1\right) + \left(\dfrac{3!}{2! * (3 - 2)!} * a^{(3 - 2)}b^2\right) + \left(\dfrac{3!}{3! * (3 - 3)!} * a^{(3-3)}b^3\right) \implies\)
\(\displaystyle (a + b)^3 = = a^2 + 3a^2b +3ab^2 + b^3.\)
And so on forever. You can use Pascal's triangle to simplify the process.
EDIT Here is a link to Pascal's triangle
http://en.wikipedia.org/wiki/Pascal's_triangle
As you can see from it
\(\displaystyle (a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4.\)
By the way, the term you want for "do from one to another" is "generalize." A lot of math is about generalization and its consequence, abstraction.
SECOND EDIT
\(\displaystyle (a - b)^n = \displaystyle \left(\sum_{i=0}^n\binom{n}{i} * (- 1)^i * a^{(n-i)}b^i\right).\)
Note \(\displaystyle (a - b)^2 = a^2 - 2ab + b^2 \ne a^2 - b^2.\)
There is a different pattern for difference of powers.
\(\displaystyle \displaystyle integer\ n > 1 \implies a^n - b^n = (a - b) * \left(\sum_{i=0}^{n-1}a^{(n-1-i)}b^i\right).\)
So \(\displaystyle a^5 - b^5 = (a - b)(a^4 + a^3b + a^2b^2 + ab^3 + b^4).\)