Factorisation

Juri

New member
Joined
Nov 14, 2019
Messages
27
I tried to solve

x^2-y^2-4y-4 and got an answer of (x-y-2) (x+y+2).

I was wondering if I got it right.
 
I followed the order of:

1. x^2 - (y^2 - 4y - 4)
2. X^2 - (y + 2)^2
3. x - (y + 2) • x + (y + 2)
4. (x - y - 2) • (x + y + 2)
 
I followed the order of:

1. x^2 - (y^2 - 4y - 4)
2. X^2 - (y + 2)^2
3. x - (y + 2) • x + (y + 2)
4. (x - y - 2) • (x + y + 2)
How do you check whether factorization is correct?
 
The answer is usually correct when the answer is simplified but is still equal to the original expression when you multiply it out again.
 
I followed the order of:

1. x^2 - (y^2 - 4y - 4) . . . . . The signs inside are not correct.
2. X^2 - (y + 2)^2 . . . . . . . . That leading letter needs to be in lower case.
3. x - (y + 2) • x + (y + 2) . . . . . Grouping symbols are missing.
4. (x - y - 2) • (x + y + 2) . . . . . You can drop the multiplication dot for style purposes.


Look at this:

1. x^2 - (y^2 + 4y + 4)
2. x^2 - (y + 2)^2
3. [x - (y + 2)][x + (y + 2)]
4. (x - y - 2)(x + y + 2)
 
Last edited:
Look at this:

1. x^2 - (y^2 + 4y + 4)
2. x^2 - (y + 2)^2
3. [x - (y + 2)][x + (y + 2)]
4. (x - y - 2)(x + y + 2)
Thanks for pointing out the little error!

I’m glad (x- y - 2) (x + y + 2) is the answer.
 
Top