Since
\(\displaystyle \frac{x^k - y^k}{x-y} = x^{k-1}y^0 + x^{k-2}y^1 + x^{k-3}y^2 + ... + x^1y^{k-2} + y^{k-1}\)
\(\displaystyle {x^k - y^k} = (x-y)(x^{k-1}y^0 + x^{k-2}y^1 + x^{k-3}y^2 + ... + x^1y^{k-2} + y^{k-1})\)
hence \(\displaystyle {x^k - y^k} = (x-y)q_k(x)\)
As usual, we write our polynomial \(\displaystyle p\) as
\(\displaystyle p(x) = a_nx^n + a_{n-1}x^{n-1} + ... + a_1x + a_0 \)
\(\displaystyle p(x)-p(y) = \)
\(\displaystyle a_nx^n + a_{n-1}x^{n-1} + ... + a_1x + a_0 \)
\(\displaystyle \\ -(a_ny^n + a_{n-1}y^{n-1} + ... + a_1y + a_0)\)
\(\displaystyle = a_n(x^n-y^n) + a_{n-1}(x^{n-1}-y{n-1}^) + ... + a_1(x-y)\)
The terms have the form \(\displaystyle a_k(x^k-y^k)\). But \(\displaystyle x^k-y^k = (x-y)q_k(x)\), and if we substitute this in we get:
\(\displaystyle p(x)-p(y)=\)
\(\displaystyle a_n(x-y)q_n(x) + a_{n-1}(x-y)q_{n-1}(x) + ... + a_1(x-y)\)
\(\displaystyle (x-y)(a_nq_n(x) + a_{n-1}q_{n-1}(x) + ... a_1)\)
\(\displaystyle = (x-y)q(x)\) where \(\displaystyle q(x) = a_nq_n(x) + a_{n-1}q_{n-1}(x) + ... a_1\)
If \(\displaystyle p(a) = 0\) where \(\displaystyle y = a\) then
\(\displaystyle p(x)-p(a) = (x-a)q(x) \)
Q.E.D
My question is why we don't write \(\displaystyle p(x) - p(y)\) as
\(\displaystyle a_n(x-y)q_n(x) + a_{n-1}(x-y)q_{n-1}(x) + ... + a_1(x-y)q_1(x)\)
\(\displaystyle (x-y)(a_nq_n(x) + a_{n-1}q_{n-1}(x) + ... a_1q_1(x))\).
Can anyone please explain this to me thanks!
\(\displaystyle \frac{x^k - y^k}{x-y} = x^{k-1}y^0 + x^{k-2}y^1 + x^{k-3}y^2 + ... + x^1y^{k-2} + y^{k-1}\)
\(\displaystyle {x^k - y^k} = (x-y)(x^{k-1}y^0 + x^{k-2}y^1 + x^{k-3}y^2 + ... + x^1y^{k-2} + y^{k-1})\)
hence \(\displaystyle {x^k - y^k} = (x-y)q_k(x)\)
As usual, we write our polynomial \(\displaystyle p\) as
\(\displaystyle p(x) = a_nx^n + a_{n-1}x^{n-1} + ... + a_1x + a_0 \)
\(\displaystyle p(x)-p(y) = \)
\(\displaystyle a_nx^n + a_{n-1}x^{n-1} + ... + a_1x + a_0 \)
\(\displaystyle \\ -(a_ny^n + a_{n-1}y^{n-1} + ... + a_1y + a_0)\)
\(\displaystyle = a_n(x^n-y^n) + a_{n-1}(x^{n-1}-y{n-1}^) + ... + a_1(x-y)\)
The terms have the form \(\displaystyle a_k(x^k-y^k)\). But \(\displaystyle x^k-y^k = (x-y)q_k(x)\), and if we substitute this in we get:
\(\displaystyle p(x)-p(y)=\)
\(\displaystyle a_n(x-y)q_n(x) + a_{n-1}(x-y)q_{n-1}(x) + ... + a_1(x-y)\)
\(\displaystyle (x-y)(a_nq_n(x) + a_{n-1}q_{n-1}(x) + ... a_1)\)
\(\displaystyle = (x-y)q(x)\) where \(\displaystyle q(x) = a_nq_n(x) + a_{n-1}q_{n-1}(x) + ... a_1\)
If \(\displaystyle p(a) = 0\) where \(\displaystyle y = a\) then
\(\displaystyle p(x)-p(a) = (x-a)q(x) \)
Q.E.D
My question is why we don't write \(\displaystyle p(x) - p(y)\) as
\(\displaystyle a_n(x-y)q_n(x) + a_{n-1}(x-y)q_{n-1}(x) + ... + a_1(x-y)q_1(x)\)
\(\displaystyle (x-y)(a_nq_n(x) + a_{n-1}q_{n-1}(x) + ... a_1q_1(x))\).
Can anyone please explain this to me thanks!
Last edited: