exponential problem

ekrutsch said:
I don't exactly know where to begin with this one.

solve: 5^2x+1=1/27

Is it:

\(\displaystyle 5^{2x+1}\)

or

\(\displaystyle 5^{2x} + 1\)

or

\(\displaystyle 5^2x + 1\)

Also re-check all the numbers for accuracy.
 
Hello, ekrutsch!

\(\displaystyle \text{Solve: }\;5^{2x+1} \:=\:\frac{1}{27}\)

\(\displaystyle \text{Take logs: }\;\ln\left(5^{2x+1}\right) \;=\;\ln\left(\frac{1}{27}\right) \;=\;\ln\left(\frac{1}{3^3}\right) \;=\;\ln\left(3^{-3}) \;=\;-3\ln(3)\)

\(\displaystyle \text{We have: }\;(2x+1)\ln(5) \;=\;-3\ln(3) \quad\Rightarrow\quad 2x + 1 \;=\;\frac{-3\ln(3)}{\ln(5)}\)

. . . . . . \(\displaystyle 2x \;=\;-\frac{3\ln(3)}{\ln(5)} - 1 \quad\Rightarrow\quad x \;=\;-\frac{1}{2}\bigg[\frac{3\ln(3)}{\ln(5)} + 1\bigg] \;\approx\;-1.524\)

 
Top