exponential functions

startingover

New member
Joined
Mar 10, 2007
Messages
12
f(x) = e^x + e^-x
f'(x) = e^x (1) + e^-x(-1)
f'(x) = e^x - e^-x

f"(x) = e^x (-1) +e^x (1)
f"(x) = -e^x + e^x

How do you solve to find the inflection points and concavity?
 
The second derivative of \(\displaystyle \L\\e^{x}+e^{-x}\) is the same,

\(\displaystyle \L\\e^{x}+e^{-x}=0\)

This does not have any real solutions which resolves to 0.

See?. No inflection points.

Since f''(x)>0 on the interval \(\displaystyle \L\\({-\infty},{\infty})\), then it is concave up.

95760333ts8.jpg
 
Hello, startingover!

f(x)=ex+ex\displaystyle f(x) \:= \:e^x\,+\,e^{-x }

f(x)=exex\displaystyle f'(x)\:=\:e^x\,-\,e^{-x}

fx)=ex+ex\displaystyle f''x)\:=\:e^x\,+\,e^{-x }

How do you solve to find the inflection points and concavity?

As usual, solve: f(x)=0\displaystyle f''(x)\:=\:0

We have: ex+ex=0\displaystyle \:e^x\,+\,e^{-x}\:=\:0

Multiply by ex:    e2x+1=0        e2x=1\displaystyle e^x:\;\;e^{2x}\,+\,1\:=\:0\;\;\Rightarrow\;\;e^{2x}\:=\:-1

Take logs: ln(e2x)=ln(1)\displaystyle \:\ln\left(e^{2x}\right) \:=\:\ln(-1) ? . . . no real roots

Therefore, there are no inflection points.


At x=0:    f(0)=e0+e0=+2\displaystyle x\,=\,0:\;\;f''(0) \:=\:e^0\,+\,e^0 \:=\:+2 . . . always positive.

Therefore, the graph is always concave up
. . as shown in galactus' graph.

 
Top