Exponential function

Kflower1

New member
Joined
Jan 30, 2011
Messages
1
So if I have lim--> infinity and the function ((5e^3x)+(e^x))/((7e^3x)-(e^-2x)) how do I go about evaluating the limit? I don't even know how to start this problem. Please help. Thanks for your time.
 
Kflower1 said:
So if I have lim--> infinity and the function ((5e^3x)+(e^x))/((7e^3x)-(e^-2x)) how do I go about evaluating the limit? I don't even know how to start this problem. Please help. Thanks for your time.

To have a better idea about the "goal", substitute:

u = e[sup:1h1h776g]x[/sup:1h1h776g]
 
Hello, Kflower1!


We have: limx5e3x+ex7e3x1e2x\displaystyle \text{We have: }\lim_{x\to\infty} \,\frac{5e^{3x} + e^x}{7e^{3x} - \frac{1}{e^{2x}}}

Divide numerator and denominator by e3x ⁣:\displaystyle \text{Divide numerator and denominator by }e^{3x}\!:

. . limx5+1e2x71e5x    =    5+070    =    57\displaystyle \lim_{x\to\infty}\,\dfrac{5 + \dfrac{1}{e^{2x}}} {7 - \dfrac{1}{e^{5x}}} \;\;=\;\;\frac{5+0}{7-0} \;\;=\;\;\frac{5}{7}

 
Top