Exponential Equations

giddyupc

New member
Joined
Sep 13, 2011
Messages
5
Solve the equation:

(ax)ln(a)=(bx)ln(b)
ln(ax)ln(a)=ln(bx)ln(b)

ln(a) X ln(ax)=ln(b) X ln(bx)

ln(a)2+(lna X lnx) =ln(b)2+(lnb X lnx)

(lna X lnx)-(lnb X lnx)=ln(b)2+ln(a)2

lna(lnx)-lnb(lnx)=ln(b)2+ln(a)2

lna-lnb(lnx)=ln(b)2+ln(a)2

lnx=[ln(b)2+ln(a)2] / [lna-lnb]

x=e[ln(b)2+ln(a)2] / [lna-lnb]


I attempted to solve this equation, but I'm honestly not sure about my work. Could someone tell me if I have made a mistake somewhere?
 
Solve the equation:

(ax)ln(a)=(bx)ln(b)

aln(a) * xln(a) = bln(b) * xln(b)

[xln(a)]/[xln(b)] = [bln(b)]/[aln(a)]

x[ln(a)-ln(b)] = [bln(b)]/[aln(a)]

Now finish it.......

ln(ax)ln(a)=ln(bx)ln(b)

ln(a) X ln(ax)=ln(b) X ln(bx)

ln(a)2+(lna X lnx) =ln(b)2+(lnb X lnx)

(lna X lnx)-(lnb X lnx)=ln(b)2+ln(a)2

lna(lnx)-lnb(lnx)=ln(b)2+ln(a)2

lna-lnb(lnx)=ln(b)2+ln(a)2

lnx=[ln(b)2+ln(a)2] / [lna-lnb]

x=e[ln(b)2+ln(a)2] / [lna-lnb]


I attempted to solve this equation, but I'm honestly not sure about my work. Could someone tell me if I have made a mistake somewhere?

.
 
Top