exponential equality: 2^x + 2^(x+1)= 4^x + 4^(x+1)

smsmith

New member
Joined
Sep 15, 2006
Messages
18
I am a bit rusty. I solved this by elimination. However, no matter what I tried I could not seem to figure out an algebraic solution. Any input would be appreciated.

2^x + 2^(x+1)= 4^x + 4^(x+1)

Thanks in advance,
S M Smith
 
What does "elimination" mean in this context?

Some Hints:
4=22\displaystyle 4 = 2^{2}

2x+1=2x21=2x2\displaystyle 2^{x+1} = 2^{x}*2^{1} = 2^{x}*2

Some Work:
2x+2x+1=2x(1+2)=2x(3)\displaystyle 2^{x} + 2^{x+1} = 2^{x}(1 + 2) = 2^{x}(3)

4x+4x+1=4x(1+4)=4x(5)=22x(5)=(2x)2(5)\displaystyle 4^{x} + 4^{x+1} = 4^{x}(1 + 4) = 4^{x}(5) = 2^{2x}(5) = (2^{x})^{2}(5)

Thus:

2x(3)=(2x)2(5)\displaystyle 2^{x}(3) = (2^{x})^{2}(5)

Honest, it's getting better. :) Can you go from there?
 
Take log of both sides:

\(\displaystyle \L\\ln(2^{x}+2^{x+1})=ln(4^{x}+4^{x+1})\)

=\(\displaystyle \L\\xln(2)+ln(3)=2xln(2)+ln(5)\)

=\(\displaystyle \L\\xln(2)-2xln(2)=ln(5)-ln(3)\)

=\(\displaystyle \L\\x(ln(2)-2ln(2))=ln(5)-ln(3)\)

=\(\displaystyle \L\\x=\frac{ln(5)-ln(3)}{ln(2)-2ln(2)}\)

=\(\displaystyle \H\\\frac{ln(\frac{3}{5})}{ln(2)}\)
 
Hello, smsmith!

2x+2x+1  =  4x+4x+1\displaystyle 2^x\,+\,2^{x+1}\;= \;4^x\, +\, 4^{x+1}

Get the same base . . .

The right side is: (22)x+(22)x+1  =  22x+22x+2\displaystyle \,(2^2)^x\,+\,(2^2)^{x+1}\;=\;2^{2x}\,+\,2^{2x+2}

The equation becomes: 2x+2x+1  =  22x+22x+2\displaystyle \:2^x\,+\,2^{x+1} \;= \;2^{2x}\,+\,2^{2x+2}

. . and we have: 22x+2+22x2x+12x  =  0\displaystyle \:2^{2x+2}\,+\,2^{2x}\,-\,2^{x+1}\,-\,2^x\;=\;0


Since 2x0,\displaystyle 2^x\,\neq\,0, divide by 2x:    2x+2+2x211  =  0\displaystyle 2^x:\;\;2^{x+2}\,+\,2^x\,-\,2^1\,-\,1 \;=\;0

and we have: 2x+2+2x3  =  0\displaystyle \:2^{x+2}\,+\,2^x\,-\,3\;=\;0

. . . . . . . . . . 222x+2x3  =  0\displaystyle 2^2\cdot2^x\,+\,2^x\,-\,3\;=\;0

. . . . . . . . . . .42x+2x3  =  0\displaystyle 4\cdot2^x\,+\,2^x\,-\,3\;=\;0

. . . . . . . . . . . . . . 52x3  =  0\displaystyle 5\cdot2^x\,-\,3\;=\;0

. . . . . . . . . . . . . . . . . . 2x  =  35\displaystyle 2^x\;=\;\frac{3}{5}


Take logs: ln(2x)  =  ln(35)        xln2  =  ln(35)\displaystyle \:\ln\left(2^x\right) \;= \;\ln\left(\frac{3}{5}\right)\;\;\Rightarrow\;\;x\cdot\ln2\;=\;\ln\left(\frac{3}{5}\right)

\(\displaystyle \text{Therefore: }\L\:x\;=\;\frac{\ln\left(\frac{3}{5}\right)}{\ln 2}\)
 
Top