Win_odd Dhamnekar
Junior Member
- Joined
- Aug 14, 2018
- Messages
- 207
Suppose [imath]X_1, X_2, \dots[/imath] are independent random variables with [imath]\mathbb{P}[X_i=1]=\frac13[/imath] and [imath]\mathbb{P}[X_i= -1] =\frac23[/imath].
Let [math]S_n = X_1 +\dots +X_n[/math] and let [imath]\mathcal{F}_n[/imath] denote the information in [imath] X_1, \dots, X_n[/imath]
1.Find[math]\mathbb{E}[S_n], \mathbb{E}[S^2_n], \mathbb{E}[S^3_n][/math]2. If m < n Find [math]E[S_n| \mathcal{F}_m], E[S^2_n|\mathcal{F}_m], E[S^3_n|\mathcal{F}_m][/math]3. If m < n , Find [math]E[X_m|S_n][/math]
How to answer all these questions?
I am working on these questions. Any math help will be accepted.
Let [math]S_n = X_1 +\dots +X_n[/math] and let [imath]\mathcal{F}_n[/imath] denote the information in [imath] X_1, \dots, X_n[/imath]
1.Find[math]\mathbb{E}[S_n], \mathbb{E}[S^2_n], \mathbb{E}[S^3_n][/math]2. If m < n Find [math]E[S_n| \mathcal{F}_m], E[S^2_n|\mathcal{F}_m], E[S^3_n|\mathcal{F}_m][/math]3. If m < n , Find [math]E[X_m|S_n][/math]
How to answer all these questions?
I am working on these questions. Any math help will be accepted.