Expectation of expansion of sum of independent random variables raised to some power.

Win_odd Dhamnekar

Junior Member
Joined
Aug 14, 2018
Messages
212
Suppose X1,X2,X_1, X_2, \dots are independent random variables with P[Xi=1]=13\mathbb{P}[X_i=1]=\frac13 and P[Xi=1]=23\mathbb{P}[X_i= -1] =\frac23.
Let Sn=X1++XnS_n = X_1 +\dots +X_n and let Fn\mathcal{F}_n denote the information in X1,,Xn X_1, \dots, X_n

1.FindE[Sn],E[Sn2],E[Sn3]\mathbb{E}[S_n], \mathbb{E}[S^2_n], \mathbb{E}[S^3_n]2. If m < n Find E[SnFm],E[Sn2Fm],E[Sn3Fm]E[S_n| \mathcal{F}_m], E[S^2_n|\mathcal{F}_m], E[S^3_n|\mathcal{F}_m]3. If m < n , Find E[XmSn]E[X_m|S_n]
How to answer all these questions?

I am working on these questions. Any math help will be accepted.:)
 
1.
E(Sn)=E(X1++Xn)=E(nXi)=nE(Xi)E(Sn2)==n2E(Xi2)E(Sn3)==n3E(Xi3)E(S_n) = E(X_1+\dots+X_n)=E(nX_i)=nE(X_i)\\ E(S_n^2)=\dots = n^2E(X_i^2)\\ E(S_n^3)=\dots = n^3E(X_i^3)
 
1.
E(Sn)=E(X1++Xn)=E(nXi)=nE(Xi)E(Sn2)==n2E(Xi2)E(Sn3)==n3E(Xi3)E(S_n) = E(X_1+\dots+X_n)=E(nX_i)=nE(X_i)\\ E(S_n^2)=\dots = n^2E(X_i^2)\\ E(S_n^3)=\dots = n^3E(X_i^3)
I computed the answers as E[Sn]=n3\mathbb{E}[S_n]=-\frac{n}{3}1677941348125.png

Are these answers correct?
 
Agree with the first.

Didn't have time to check the other 2, but it doesn't feel right. Try with small cases like n=2, 3 to see if your formulas work.
Correct answers are E[Sn2]=n+n(n1)2,E[Sn3]=n3n(n1)n(n1)9\mathbb{E}[S^2_n]= n + \frac{n(n-1)}{2}, \mathbb{E}[S^3_n]= -\frac{n}{3}-n(n-1)- \frac{n(n-1)}{9}
 
1.
E(Sn)=E(X1++Xn)=E(nXi)=nE(Xi)E(Sn2)==n2E(Xi2)E(Sn3)==n3E(Xi3)E(S_n) = E(X_1+\dots+X_n)=E(nX_i)=nE(X_i)\\ E(S_n^2)=\dots = n^2E(X_i^2)\\ E(S_n^3)=\dots = n^3E(X_i^3)
I don't agree that E(Sn2)=n2E(Xi2)E(S_n^2) = n^2 E(X_i^2).
 
Correct answers are E[Sn2]=n+n(n1)2,E[Sn3]=n3n(n1)n(n1)9\mathbb{E}[S^2_n]= n + \frac{n(n-1)}{2}, \mathbb{E}[S^3_n]= -\frac{n}{3}-n(n-1)- \frac{n(n-1)}{9}
I get a different answer for E(Sn2)E(S_n^2). Where did you get yours?
 
I assumed the RVs are symmetric above.

E(Xi)=13\displaystyle E(X_i) = -\dfrac{1}{3}

E(Xi2)=1\displaystyle E(X_i^2) = 1

E(Xi3)=13\displaystyle E(X_i^3) = -\dfrac{1}{3}




E(Sn)=nE(Xi)=n3\displaystyle E(S_n) = nE(X_i) = \boxed{-\dfrac{n}{3}}

E(Sn2)=nE(Xi2)+n(n1)E(Xi)2=n+n(n1)9\displaystyle E(S_n^2) = nE(X_i^2) + n(n-1)E(X_i)^2 = \boxed{n + \dfrac{n(n-1)}{9}}

E(Sn3)=nE(Xi3)+3n(n1)E(Xi2)E(Xi)+n(n1)(n2)E(Xi)3=n3n(n1)n(n1)(n2)27\displaystyle E(S_n^3) = nE(X_i^3) + 3n(n-1)E(X_i^2)E(X_i) +n(n-1)(n-2)E(X_i)^3 = \boxed{-\dfrac{n}{3} - n(n-1) -\dfrac{ n(n-1)(n-2)}{27}}
 
I assumed the RVs are symmetric above.

E(Xi)=13\displaystyle E(X_i) = -\dfrac{1}{3}

E(Xi2)=1\displaystyle E(X_i^2) = 1

E(Xi3)=13\displaystyle E(X_i^3) = -\dfrac{1}{3}




E(Sn)=nE(Xi)=n3\displaystyle E(S_n) = nE(X_i) = \boxed{-\dfrac{n}{3}}

E(Sn2)=nE(Xi2)+n(n1)E(Xi)2=n+n(n1)9\displaystyle E(S_n^2) = nE(X_i^2) + n(n-1)E(X_i)^2 = \boxed{n + \dfrac{n(n-1)}{9}}

E(Sn3)=nE(Xi3)+3n(n1)E(Xi2)E(Xi)+n(n1)(n2)E(Xi)3=n3n(n1)n(n1)(n2)27\displaystyle E(S_n^3) = nE(X_i^3) + 3n(n-1)E(X_i^2)E(X_i) +n(n-1)(n-2)E(X_i)^3 = \boxed{-\dfrac{n}{3} - n(n-1) -\dfrac{ n(n-1)(n-2)}{27}}
I like this version of E(Sn2)E(S_n^2) better :)
 
I assumed the RVs are symmetric above.

E(Xi)=13\displaystyle E(X_i) = -\dfrac{1}{3}

E(Xi2)=1\displaystyle E(X_i^2) = 1

E(Xi3)=13\displaystyle E(X_i^3) = -\dfrac{1}{3}




E(Sn)=nE(Xi)=n3\displaystyle E(S_n) = nE(X_i) = \boxed{-\dfrac{n}{3}}

E(Sn2)=nE(Xi2)+n(n1)E(Xi)2=n+n(n1)9\displaystyle E(S_n^2) = nE(X_i^2) + n(n-1)E(X_i)^2 = \boxed{n + \dfrac{n(n-1)}{9}}

E(Sn3)=nE(Xi3)+3n(n1)E(Xi2)E(Xi)+n(n1)(n2)E(Xi)3=n3n(n1)n(n1)(n2)27\displaystyle E(S_n^3) = nE(X_i^3) + 3n(n-1)E(X_i^2)E(X_i) +n(n-1)(n-2)E(X_i)^3 = \boxed{-\dfrac{n}{3} - n(n-1) -\dfrac{ n(n-1)(n-2)}{27}}
E[SnFn]=E[SmFn]+E[SnSmFn]=Sm+E[SnSm]=Sm+E[Xj](nm)=Sm13(nm)E[S_n | \mathcal{F}_n] = E[S_m | \mathcal{F}_n] +E[S_n - S_m|\mathcal{F}_n] = S_m + \mathbb{E}[S_n-S_m] = S_m + \mathbb{E}[X_j] (n -m) = S_m - \frac13 (n-m)

We know E[Xj]=13,E[Xj2]=1E[X_j]=-\frac13 , \mathbb{E}[X^2_j]= 1 for each j.
Then if m < n ,
E[Sn2Fm]=E([Sm+(SnSm)]2Fm)E[S^2_n| \mathcal{F}_m] = E([S_m + (S_n - S_m)]^2 | \mathcal{F}_m) E[Sn2Fm]=E[Sm2Fm]+2E[Sm(SnSm)Fm]+E[(SnSm)2Fm]E[S^2_n |\mathcal{F}_m] = E[ S^2_m |\mathcal{F}_m] + 2 E [S_m (S_n -S_m)| \mathcal{F}_m] + E [(S_n -S_m)^2 | \mathcal{F}_m ]
Since SmS_m is Fn\mathcal{F}_n -measurable and SnSmS_n - S_m is independent of Fm\mathcal{F}_m

E[Sm2Fm]=Sm2E[S^2_m|\mathcal{F}_m] = S^2_m
E[Sm(SnSm)Fm]=SmE[SnSmFm]=SmE[SnSm]=Sm3E[S_m(S_n -S_m) | \mathcal{F}_m]= S_m E[ S_n - S_m |\mathcal{F}_m]= S_m E[S_n - S_m] = -\frac{S_m}{3}

E[(SnSm)2Fm]=E[(SnSm)2]=Var(SnSm)=(E[Xj2]E[Xj])(nm)=43(nm)E[(S_n -S_m)^2 |\mathcal{F}_m] = \mathbb{E}[(S_n -S_m)^2] = Var (S_n - S_m) = (E[X^2_j] - E[X_j])(n-m) = \frac43 (n-m)

and hence,
E[Sn2Fm]=Sm2Sm3+43(nm)E[S^2_n |\mathcal{F}_m] = S^2_m -\frac{S_m}{3} +\frac43(n-m)
Are these above answers correct?

Note : Above answers are computed by referring to G.F. Lawler's Book "Stochastic Calculus: An Introduction with Applications"

How to compute E[Sn3Fm]?E[ S^3_n|\mathcal{F}_m]?
 
E[SnFn]=E[SmFn]+E[SnSmFn]=Sm+E[SnSm]=Sm+E[Xj](nm)=Sm13(nm)E[S_n | \mathcal{F}_n] = E[S_m | \mathcal{F}_n] +E[S_n - S_m|\mathcal{F}_n] = S_m + \mathbb{E}[S_n-S_m] = S_m + \mathbb{E}[X_j] (n -m) = S_m - \frac13 (n-m)

We know E[Xj]=13,E[Xj2]=1E[X_j]=-\frac13 , \mathbb{E}[X^2_j]= 1 for each j.
Then if m < n ,
E[Sn2Fm]=E([Sm+(SnSm)]2Fm)E[S^2_n| \mathcal{F}_m] = E([S_m + (S_n - S_m)]^2 | \mathcal{F}_m) E[Sn2Fm]=E[Sm2Fm]+2E[Sm(SnSm)Fm]+E[(SnSm)2Fm]E[S^2_n |\mathcal{F}_m] = E[ S^2_m |\mathcal{F}_m] + 2 E [S_m (S_n -S_m)| \mathcal{F}_m] + E [(S_n -S_m)^2 | \mathcal{F}_m ]
Since SmS_m is Fn\mathcal{F}_n -measurable and SnSmS_n - S_m is independent of Fm\mathcal{F}_m

E[Sm2Fm]=Sm2E[S^2_m|\mathcal{F}_m] = S^2_m
E[Sm(SnSm)Fm]=SmE[SnSmFm]=SmE[SnSm]=Sm3E[S_m(S_n -S_m) | \mathcal{F}_m]= S_m E[ S_n - S_m |\mathcal{F}_m]= S_m E[S_n - S_m] = -\frac{S_m}{3}

E[(SnSm)2Fm]=E[(SnSm)2]=Var(SnSm)=(E[Xj2]E[Xj])(nm)=43(nm)E[(S_n -S_m)^2 |\mathcal{F}_m] = \mathbb{E}[(S_n -S_m)^2] = Var (S_n - S_m) = (E[X^2_j] - E[X_j])(n-m) = \frac43 (n-m)

and hence,
E[Sn2Fm]=Sm2Sm3+43(nm)E[S^2_n |\mathcal{F}_m] = S^2_m -\frac{S_m}{3} +\frac43(n-m)
Are these above answers correct?

Note : Above answers are computed by referring to G.F. Lawler's Book "Stochastic Calculus: An Introduction with Applications"

How to compute E[Sn3Fm]?E[ S^3_n|\mathcal{F}_m]?
Are you done with E(Sn2)E(S_n^2) ?
 
Are you done with E(Sn2)E(S_n^2) ?
E[Sn2]=n+n(n1)9E[S^2_n]= n +\displaystyle\frac{n(n-1)}{9}

In #8 , all the answers are correctly stated for question 1 considering multinomial theorem for (x1++xk)n( x_1 + \dots + x_k)^n
 
Errata [Sn2Fm]=Sm223Sm+(nm) [S^2_n|\mathcal{F}_m] = S^2_m -\frac23S_m + (n- m)



E[Sn3Fm]=E([Sm+(SnSm)]3Fm)E[S^3_n|\mathcal{F}_m]= E([ S_m + (S_n - S_m)]^3|\mathcal{F}_m)

E[Sn3Fm]=E[Sn3Fm]+3E[Sm2(SnSm)Fm]+3E[Sm(SnSm)2Fm]+E[(SnSm)3Fm]E[S^3_n|\mathcal{F}_m] = E[S^3_n|\mathcal{F}_m] + 3 E[S^2_m(S_n-S_m)|\mathcal{F}_m] + 3E[ S_m(S_n - S_m)^2 | \mathcal{F}_m] + E[(S_n -S_m)^3| \mathcal{F}_m]

SinceSmS_m is Fm\mathcal{F}_m -measurable and SnSmS_n - S_m is independent of Fm\mathcal{F}_m

E[Sm3Fm]=Sm3E[S^3_m|\mathcal{F}_m] = S^3_m
E[Sm2(SnSm)Fm]=Sm2E[(SnSm)Fm]=Sm2E[SnSm]=Sm23 E[S^2_m(S_n -S_m )|\mathcal{F}_m] = S^2_m E[(S_n -S_m)|\mathcal{F}_m] = S^2_m \mathbb{E}[ S_n -S_m] = -\displaystyle\frac{S^2_m}{3}
=
E[Sm)(SnSm)2Fm]=SmE[(SnSm)2Fm]=SmE[Xj2]=Sm(1)=Sm E[S_m )(S_n -S_m)^2|\mathcal{F}_m] = S_m E[(S_n -S_m)^2 |\mathcal{F}_m]= S_m E[X^2_j] = S_m (1) = S_m

E[(SnSm)3Fm]=E[Xj3]=13(nm)E[(S_n -S_m)^3 |\mathcal{F}_m]= E[X^3_j]= -\displaystyle\frac13 (n-m)

E[Sn3Fm]=Sm3Sm2+3Sm13(nm)E[S^3_n|\mathcal{F}_m] = S^3_m - S^2_m + 3 S_m - \displaystyle\frac13 (n-m )

3.How to find E[XmSn]E[X_m | S_n] given that m < n.
 
Suppose X1,X2,X_1, X_2, \dots are i.i.d. random variables. We will compute E[X1Sn]E[X_1| S_n]
Note that the information contained in the one data point SnS_n is less than the information contained in X1,,Xn.X_1, \dots , X_n. However, since the random variables are independent and identically distributed, it must be the case thatE[X1Sn]=E[XmSn]=E[XnSn]E[X_1|S_n ] = E[X_m| S_n ] = E[X_n |S_n]
Linearity implies that
mE[X1Sn]=j=1mE[XjSn]=E[X1++XnSn]=E[SmSn]=Smm E[X_1|S_n] =\displaystyle\sum_{j=1}^m E[X_j|S_n] = E[ X_1 +\dots + X_n| S_n] = E[S_m |S_n] = S_m
E[XmSn]=Smm\therefore E[X_m|S_n] =\frac{S_m}{m}
 
Top