Existence and uniqueness proofs

Aion

Junior Member
Joined
May 8, 2018
Messages
193
Hey, can someone help me with question (b) of this problem?

Recall that symmetric difference is associative; in other words, for all sets [MATH]A, B[/MATH] and [MATH]C, A\Delta(B\Delta C)=(A\Delta B)\Delta C[/MATH]. And clearly symmetric difference is commutative; in other words, for all sets [MATH] A[/MATH] and [MATH] B, A\Delta B = B\Delta A[/MATH].

(a) Prove that there is a unique identity element for the symmetric difference. In other words, there is a unique set [MATH]X[/MATH] such that for every set [MATH]A, A\Delta X=A[/MATH].

Definition: Let [MATH]P(X)[/MATH] be the statement [MATH]\forall A( A= A\Delta X)[/MATH]
Goal: [MATH]\exists ! X \forall A( A= A\Delta X)[/MATH]
Exsistence Proof:

  1. Let [MATH]X = \varnothing [/MATH]
  2. Let [MATH]A[/MATH] be an arbitrary set.
  3. Suppose [MATH]x[/MATH] is an arbitrary element of [MATH]A\Delta X[/MATH] [Hypothesis]
  4. [MATH]x\epsilon A\Delta \varnothing [/MATH] (1), (3)
  5. [MATH]x \epsilon A \setminus \varnothing \vee x \epsilon \varnothing \setminus A[/MATH] [Definition of [MATH]\Delta[/MATH]]
  6. [MATH](x\epsilon A \wedge x \notin \varnothing) \vee (x \in \varnothing \wedge x \notin A)[/MATH] (5) [Definition of [MATH]\setminus[/MATH]]
  7. [MATH]x\epsilon A[/MATH] [Since [MATH]x \in \varnothing \wedge x \notin A[/MATH] is a contradiction. And [MATH] x \notin \varnothing[/MATH] is a tautology.]
  8. [MATH]x \epsilon A\Delta X \to x \epsilon A[/MATH] [Gm. Hyp. (3)-(7)]
  9. Suppose [MATH]x[/MATH] is an arbitrary element of [MATH]A[/MATH] [Hypothesis]
  10. [MATH]x \epsilon A [/MATH] (9)
  11. [MATH]x \epsilon A \wedge x \notin \varnothing [/MATH] [Conjunction introduction]
  12. [MATH](x \epsilon A \wedge x \notin \varnothing ) \vee (x \epsilon \varnothing \wedge x \notin A) [/MATH] [Disjunction introduction]
  13. [MATH]x \epsilon A \Delta \varnothing[/MATH] (12), [Definition of [MATH]\Delta[/MATH]]
  14. [MATH]x\epsilon A \to x\epsilon A\Delta \varnothing[/MATH] [Gm. Hyp. (9)-(13)]
  15. [MATH](x \epsilon A\Delta \varnothing \to x \epsilon A) \wedge (x\epsilon A \to x\epsilon A\Delta \varnothing)[/MATH] (8), (13) [Conjunction introduction]
  16. [MATH]x \epsilon A\Delta \varnothing \leftrightarrow x \epsilon A\Delta \varnothing[/MATH] (14) [Definition of [MATH]\leftrightarrow[/MATH]]
  17. [MATH]\forall x (x \epsilon A \leftrightarrow x \epsilon A\Delta \varnothing)[/MATH] (2) [Since x was arbitrary]
  18. [MATH]A = A\Delta \varnothing [/MATH] (17) [Definition of [MATH]=[/MATH]]
  19. [MATH]\forall A( A= A\Delta \varnothing)[/MATH] (2), (18) [Since A was arbitrary]
  20. [MATH]\exists X\forall A( A= A\Delta X)[/MATH] (1), (19)
  21. [MATH]\exists X P(X)[/MATH] (20) [Definition of [MATH]P(X)[/MATH]]
Uniqueness proof:
  1. Let Z and Y be arbitrary sets.
  2. [MATH]P(Z) \wedge P(Y) [/MATH] [Hypothesis]
  3. [MATH]\forall A( A= A\Delta Z) \wedge \forall A( A= A\Delta Y)[/MATH] (2) [Definition of [MATH]P(Z)[/MATH] and [MATH]P(Y)[/MATH]]
  4. [MATH] Y = Y\Delta Z[/MATH] (3) [Universal instantiation]
  5. [MATH] Z = Z\Delta Y[/MATH] (3) [Universal instantiation]
  6. [MATH] Y\Delta Z = Z\Delta Y [/MATH] [Commutativity]
  7. [MATH] Y = Z [/MATH] (4), (5), (6)
  8. [MATH]P(Y) \wedge P(Z) \to Y = Z[/MATH] [Gm. Hyp. (2)-(7)]
  9. [MATH]\forall Y \forall Z (P(Y)\wedge P(Z) \to Y = Z)[/MATH] [Since Y and Z was arbitrary]
Thus we have proved [MATH]\exists ! X \forall A( A= A\Delta X)[/MATH]
(b) Prove that every set has a unique inverse for the operation of symmetric difference. In other words, for every set A there is a unique set B such that [MATH]A\Delta B =X[/MATH], where X is the identity element from part(a),

Given:
[MATH]\exists X\forall A( A= A\Delta X)[/MATH], i.e. [MATH]\forall A( A= A\Delta \varnothing)[/MATH]
Goal: [MATH]\forall A\exists !B(A\Delta B = X)[/MATH], i.e. [MATH]\forall A\exists !B(A\Delta B = \varnothing)[/MATH]
 
Last edited:
Hey, can someone help me with question (b) of this problem?
(b) Prove that every set has a unique inverse for the operation of symmetric difference. In other words, for every set A there is a unique set B such that [MATH]A\Delta B =X[/MATH], where X is the identity element from part(a),
Given: [MATH]\exists X\forall A( A= A\Delta X)[/MATH], i.e. [MATH]\forall A( A= A\Delta \varnothing)[/MATH]Goal: [MATH]\forall A\exists !B(A\Delta B = X)[/MATH], i.e. [MATH]\forall A\exists !B(A\Delta B = \varnothing)[/MATH]
Is it clear to you that each set is its own inverse?
What if \(\displaystyle A\Delta B=\emptyset~\&~A\ne B~?\)
What does it mean to say \(\displaystyle A\ne B~?\)
 
Is it clear to you that each set is its own inverse?
Do you mean that \(\displaystyle \forall A (A\Delta A =\emptyset)\)?
What if \(\displaystyle A\Delta B=\emptyset~\&~A\ne B~?\)
I suppose this is the reason why I'm stuck. I don't know.

What does it mean to say \(\displaystyle A\ne B~?\)

[MATH] A \nsubseteq B \lor B \nsubseteq A [/MATH]
Well I've tried to simply it... if I'm correct it also means

[MATH]\exists x(x \epsilon (A \cup B) \setminus (A\cap B))[/MATH] which is the same as [MATH]\exists x(x \epsilon A \Delta B)[/MATH]
What if \(\displaystyle A\Delta B=\emptyset~\&~A\ne B~?\)

If my above reasoning is correct. We can reformulate the givens into this:

[MATH] \forall x ( x \notin A \Delta B) \wedge \exists x (x \in A \Delta B)[/MATH] which yeilds a contradiction.
 
Last edited:
Suppose that \(\displaystyle A\Delta B=\emptyset\) where \(\displaystyle A\ne B\).
Now we have \(\displaystyle \exists u\in A\setminus B\vee\exists v\in B\setminus A\), Please explain why.
Does that contradict \(\displaystyle A\Delta B=\emptyset~?\)

 
Thanks, I think I've figured it out now.

Goal: [MATH]\forall A\exists !B(A\Delta B = X)[/MATH], i.e. [MATH]\forall A\exists !B(A\Delta B = \varnothing)[/MATH]
1. Let A be an arbitrary set.

Existence part

2. Let [MATH]B = A[/MATH]3. [MATH]A\Delta B = A \Delta A = \varnothing[/MATH]4. [MATH]\exists B(A\Delta B = \varnothing)[/MATH]
Uniqueness part

5. Let Z and H be arbitrary sets.
6. [MATH]A\Delta Z = \varnothing \wedge A \Delta H = \varnothing[/MATH]. [Hyp.]
7. [MATH]H \neq Z[/MATH] [Indirect. Hyp.]
8. [MATH]\exists u ( u \in Z \setminus H) \vee \exists v ( v \in H \setminus Z)[/MATH]
9. Case (1): [MATH]\exists u ( u \in Z \setminus H)[/MATH]10. [MATH]u_0 \in Z \setminus H[/MATH]11. [MATH]u_0 \in Z[/MATH]12. [MATH]u_0 \in Z \wedge u_0 \notin A[/MATH]13. [MATH](u_0 \in Z \setminus A) \vee (u_0 \in A \setminus Z)[/MATH]14. [MATH]u_0 \in A \Delta Z[/MATH]16. [MATH]\perp[/MATH]
17. Case (2) [MATH]\exists v ( v \in H \setminus Z)[/MATH]18. [MATH]v_0 \in H \wedge v_0 \notin Z[/MATH]19. [MATH]v_0\in H[/MATH]20. [MATH]v_0 \in H \wedge v_0 \notin A[/MATH]21. [MATH](v_0 \in H \setminus A) \vee (v_0 \in A \setminus H)[/MATH]22. [MATH]v_0 \in A \Delta H[/MATH]23.[MATH]\perp[/MATH]
24. [MATH]H = Z [/MATH] [Gm. Ind. Hyp. (7)-(24)]
 
Last edited:
Thanks, I think I've figured it out now.

Goal: [MATH]\forall A\exists !B(A\Delta B = X)[/MATH], i.e. [MATH]\forall A\exists !B(A\Delta B = \varnothing)[/MATH]
1. Let A be an arbitrary set.

Existence part

2. Let [MATH]B = A[/MATH]3. [MATH]A\Delta B = A \Delta A = \varnothing[/MATH]4. [MATH]\exists B(A\Delta B = \varnothing)[/MATH]
Uniqueness part

5. Let Z and H be arbitrary sets.
6. [MATH]A\Delta Z = \varnothing \wedge A \Delta H = \varnothing[/MATH]. Hyp.
7. [MATH]H \neq Z[/MATH] (Indirect. Hyp.)
8. [MATH]\exists u ( u \in Z \setminus H) \vee \exists v ( v \in H \setminus Z)[/MATH]
9. Case (1): [MATH]\exists u ( u \in Z \setminus H)[/MATH]10. [MATH]u_0 \in Z \setminus H[/MATH]11. [MATH]u_0 \in Z[/MATH]12. [MATH]u_0 \in Z \wedge u_0 \notin A[/MATH]13. [MATH](u_0 \in Z \setminus A) \vee (u_0 \in A \setminus Z)[/MATH]14. [MATH]u_0 \in A \Delta Z[/MATH]16. [MATH]\perp[/MATH]
18. Case (2) [MATH]\exists v ( v \in H \setminus Z)[/MATH]19. [MATH]v_0 \in H \wedge v_0 \notin Z[/MATH]20. [MATH]v_0\in H[/MATH]21. [MATH]v_0 \in H \wedge v_0 \notin A[/MATH]22. [MATH](v_0 \in H \setminus A) \vee (v_0 \in A \setminus H)[/MATH]23. [MATH]v_0 \in A \Delta H[/MATH]24.[MATH]\perp[/MATH]
29. [MATH]H = Z [/MATH] [Gm. Ind. Hyp. (7)-(24)]
You have made the proof of uniqueness far too complicated
If \(\displaystyle A\) is a set then \(\displaystyle A\Delta A=\emptyset\) so existence is proven, every set is its own inverse.
So suppose that \(\displaystyle A\Delta B=\emptyset~\&~A\ne B\).
That means that \(\displaystyle \exists s\in A\setminus B\vee\exists t\in B\setminus A\).
But in either of those cases \(\displaystyle A\Delta B\ne\emptyset\)
 
You have made the proof of uniqueness far too complicated
If \(\displaystyle A\) is a set then \(\displaystyle A\Delta A=\emptyset\) so existence is proven, every set is its own inverse.
So suppose that \(\displaystyle A\Delta B=\emptyset~\&~A\ne B\).
That means that \(\displaystyle \exists s\in A\setminus B\vee\exists t\in B\setminus A\).
But in either of those cases \(\displaystyle A\Delta B\ne\emptyset\)
Goal:[MATH]\forall A\exists !B(A\Delta B = \varnothing)[/MATH]
Okey so is this a better proof?

The following are equivalent.
[MATH]\exists x (P(x) \wedge \forall y(P(y) \to y = x))[/MATH][MATH]\exists x \forall y(P(y) \longleftrightarrow y = x))[/MATH][MATH] \exists x P(x) \wedge \forall y \forall z ((P(y) \wedge P(z)) \to y = z)[/MATH]
Goal: [MATH]\forall A\exists !B(A\Delta B = \varnothing)[/MATH]
Let [MATH]P(B)[/MATH] be defined as the statement [MATH]A \Delta B = \varnothing [/MATH]
Suppose [MATH]A[/MATH] is an arbitrary set.

1. Let [MATH] A = B.[/MATH]2.[MATH] A \Delta B = A \Delta A = \varnothing[/MATH]3.[MATH] P(B)[/MATH]
4. Let [MATH]y[/MATH] be an arbitrary set.
5.[MATH] A \Delta y = \varnothing[/MATH] [Hyp.]
6.[MATH] B \Delta y = \varnothing[/MATH]7.[MATH] y \ne B[/MATH] [Ind. Hyp.]
8.[MATH] \exists s \in y \setminus B \vee \exists t \in B \setminus y[/MATH]9.[MATH] \perp [/MATH]10.[MATH] y = B[/MATH] [Gm. Ind. Hyp. (7)-(9)]
10.[MATH] A \Delta y = \varnothing \to y = B[/MATH] [Gm. Hyp. (5)-(10)]
11.[MATH] \forall y(A \Delta y = \varnothing \to y = B)[/MATH]12.[MATH] \forall y(P(y) \to y = B)[/MATH]13.[MATH] P(B) \wedge \forall y(P(y) \to y = B)[/MATH]14.[MATH] \exists B (P(B) \wedge \forall y(P(y) \to y = B))[/MATH]15.[MATH] \exists !B (P(B))[/MATH]16.[MATH] \exists !B (A\Delta B = \varnothing)[/MATH]17.[MATH] \forall A \exists !B (A\Delta B = \varnothing)[/MATH]
 
Last edited:
(c) Prove that for any sets A and B there is a unique set C such that [MATH]A \Delta C = B[/MATH].

1. Suppose A and B are arb. sets.

Existence part
2. Let [MATH]C = A \Delta B[/MATH]3. [MATH]A \Delta C = A \Delta (A \Delta B) = (A \Delta A) \Delta B = \varnothing \Delta B =B[/MATH]4. [MATH]\exists C (A \Delta C = B)[/MATH]
Uniqueness part
5. Let [MATH]y[/MATH] and [MATH]z[/MATH] be arb. sets.
6. [MATH]A \Delta y = B \wedge A \Delta Z = B[/MATH] [Hyp.]
7. [MATH]y = A \Delta B \wedge z = A \Delta B[/MATH]8. [MATH]y = z[/MATH]
 
Last edited:
Top