Hey, can someone help me with question (b) of this problem?
Recall that symmetric difference is associative; in other words, for all sets [MATH]A, B[/MATH] and [MATH]C, A\Delta(B\Delta C)=(A\Delta B)\Delta C[/MATH]. And clearly symmetric difference is commutative; in other words, for all sets [MATH] A[/MATH] and [MATH] B, A\Delta B = B\Delta A[/MATH].
(a) Prove that there is a unique identity element for the symmetric difference. In other words, there is a unique set [MATH]X[/MATH] such that for every set [MATH]A, A\Delta X=A[/MATH].
Definition: Let [MATH]P(X)[/MATH] be the statement [MATH]\forall A( A= A\Delta X)[/MATH]
Goal: [MATH]\exists ! X \forall A( A= A\Delta X)[/MATH]
Exsistence Proof:
(b) Prove that every set has a unique inverse for the operation of symmetric difference. In other words, for every set A there is a unique set B such that [MATH]A\Delta B =X[/MATH], where X is the identity element from part(a),
Given:
[MATH]\exists X\forall A( A= A\Delta X)[/MATH], i.e. [MATH]\forall A( A= A\Delta \varnothing)[/MATH]
Goal: [MATH]\forall A\exists !B(A\Delta B = X)[/MATH], i.e. [MATH]\forall A\exists !B(A\Delta B = \varnothing)[/MATH]
Recall that symmetric difference is associative; in other words, for all sets [MATH]A, B[/MATH] and [MATH]C, A\Delta(B\Delta C)=(A\Delta B)\Delta C[/MATH]. And clearly symmetric difference is commutative; in other words, for all sets [MATH] A[/MATH] and [MATH] B, A\Delta B = B\Delta A[/MATH].
(a) Prove that there is a unique identity element for the symmetric difference. In other words, there is a unique set [MATH]X[/MATH] such that for every set [MATH]A, A\Delta X=A[/MATH].
Definition: Let [MATH]P(X)[/MATH] be the statement [MATH]\forall A( A= A\Delta X)[/MATH]
Goal: [MATH]\exists ! X \forall A( A= A\Delta X)[/MATH]
Exsistence Proof:
- Let [MATH]X = \varnothing [/MATH]
- Let [MATH]A[/MATH] be an arbitrary set.
- Suppose [MATH]x[/MATH] is an arbitrary element of [MATH]A\Delta X[/MATH] [Hypothesis]
- [MATH]x\epsilon A\Delta \varnothing [/MATH] (1), (3)
- [MATH]x \epsilon A \setminus \varnothing \vee x \epsilon \varnothing \setminus A[/MATH] [Definition of [MATH]\Delta[/MATH]]
- [MATH](x\epsilon A \wedge x \notin \varnothing) \vee (x \in \varnothing \wedge x \notin A)[/MATH] (5) [Definition of [MATH]\setminus[/MATH]]
- [MATH]x\epsilon A[/MATH] [Since [MATH]x \in \varnothing \wedge x \notin A[/MATH] is a contradiction. And [MATH] x \notin \varnothing[/MATH] is a tautology.]
- [MATH]x \epsilon A\Delta X \to x \epsilon A[/MATH] [Gm. Hyp. (3)-(7)]
- Suppose [MATH]x[/MATH] is an arbitrary element of [MATH]A[/MATH] [Hypothesis]
- [MATH]x \epsilon A [/MATH] (9)
- [MATH]x \epsilon A \wedge x \notin \varnothing [/MATH] [Conjunction introduction]
- [MATH](x \epsilon A \wedge x \notin \varnothing ) \vee (x \epsilon \varnothing \wedge x \notin A) [/MATH] [Disjunction introduction]
- [MATH]x \epsilon A \Delta \varnothing[/MATH] (12), [Definition of [MATH]\Delta[/MATH]]
- [MATH]x\epsilon A \to x\epsilon A\Delta \varnothing[/MATH] [Gm. Hyp. (9)-(13)]
- [MATH](x \epsilon A\Delta \varnothing \to x \epsilon A) \wedge (x\epsilon A \to x\epsilon A\Delta \varnothing)[/MATH] (8), (13) [Conjunction introduction]
- [MATH]x \epsilon A\Delta \varnothing \leftrightarrow x \epsilon A\Delta \varnothing[/MATH] (14) [Definition of [MATH]\leftrightarrow[/MATH]]
- [MATH]\forall x (x \epsilon A \leftrightarrow x \epsilon A\Delta \varnothing)[/MATH] (2) [Since x was arbitrary]
- [MATH]A = A\Delta \varnothing [/MATH] (17) [Definition of [MATH]=[/MATH]]
- [MATH]\forall A( A= A\Delta \varnothing)[/MATH] (2), (18) [Since A was arbitrary]
- [MATH]\exists X\forall A( A= A\Delta X)[/MATH] (1), (19)
- [MATH]\exists X P(X)[/MATH] (20) [Definition of [MATH]P(X)[/MATH]]
- Let Z and Y be arbitrary sets.
- [MATH]P(Z) \wedge P(Y) [/MATH] [Hypothesis]
- [MATH]\forall A( A= A\Delta Z) \wedge \forall A( A= A\Delta Y)[/MATH] (2) [Definition of [MATH]P(Z)[/MATH] and [MATH]P(Y)[/MATH]]
- [MATH] Y = Y\Delta Z[/MATH] (3) [Universal instantiation]
- [MATH] Z = Z\Delta Y[/MATH] (3) [Universal instantiation]
- [MATH] Y\Delta Z = Z\Delta Y [/MATH] [Commutativity]
- [MATH] Y = Z [/MATH] (4), (5), (6)
- [MATH]P(Y) \wedge P(Z) \to Y = Z[/MATH] [Gm. Hyp. (2)-(7)]
- [MATH]\forall Y \forall Z (P(Y)\wedge P(Z) \to Y = Z)[/MATH] [Since Y and Z was arbitrary]
(b) Prove that every set has a unique inverse for the operation of symmetric difference. In other words, for every set A there is a unique set B such that [MATH]A\Delta B =X[/MATH], where X is the identity element from part(a),
Given:
[MATH]\exists X\forall A( A= A\Delta X)[/MATH], i.e. [MATH]\forall A( A= A\Delta \varnothing)[/MATH]
Goal: [MATH]\forall A\exists !B(A\Delta B = X)[/MATH], i.e. [MATH]\forall A\exists !B(A\Delta B = \varnothing)[/MATH]
Last edited: