I can't seem to solve this page of the revision for the exam. Really need help
that's image of the paper if someone would help with the working out I would be grateful.
https://postimg.org/image/4cx5xdmjz/
11 (a) If the lines 8x + py - 2 = 0 and qx - 9y + 3 = 0 are parallel, show that pq + 72 = 0.
. ..(b) If the lines in part (a) are perpendicular, show that 9p - 8q = 0.
. ..(c) If the lines in part (a) intersect on the y-axis, find the values of p and q.
12 (a) Expand out and simplify the following:
. . . . .[FONT=MathJax_Size3][[/FONT][FONT=MathJax_Math]t[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Math]b[/FONT][FONT=MathJax_Main]/(2[/FONT][FONT=MathJax_Math]a [/FONT][FONT=MathJax_Size3]) ][/FONT][FONT=MathJax_Main]2[/FONT]
Hence, show the following:
. . . . .[FONT=MathJax_Math]a[/FONT][FONT=MathJax_Size3]([/FONT][FONT=MathJax_Math]t[/FONT][FONT=MathJax_Main] +[/FONT][FONT=MathJax_Math] b[/FONT][FONT=MathJax_Main]/[2[/FONT][FONT=MathJax_Math]a][/FONT][FONT=MathJax_Size3])[/FONT][FONT=MathJax_Main]2 [/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Math] b[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]4[/FONT][FONT=MathJax_Math]a[/FONT][FONT=MathJax_Main] + [/FONT][FONT=MathJax_Math]c [/FONT][FONT=MathJax_Main]= [/FONT][FONT=MathJax_Math]a[/FONT][FONT=MathJax_Math]t[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Math]b[/FONT][FONT=MathJax_Math]t[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Math]c[/FONT]
. ..(b) Use the result of part (a) to find the values of p, q, and r such that 8x2 - 12x - 15 = p (x + q)2 + r.
. ..(c) Find the value of x for which 8x2 - 12x - 15 has its minimum.
. ..(d) By using the Quadratic Formula or otherwise, find the values of x for which the parabola y = 8x2 - 12x - 15 and the line y = 17x - 3 meet.
that's image of the paper if someone would help with the working out I would be grateful.
https://postimg.org/image/4cx5xdmjz/
11 (a) If the lines 8x + py - 2 = 0 and qx - 9y + 3 = 0 are parallel, show that pq + 72 = 0.
. ..(b) If the lines in part (a) are perpendicular, show that 9p - 8q = 0.
. ..(c) If the lines in part (a) intersect on the y-axis, find the values of p and q.
12 (a) Expand out and simplify the following:
. . . . .[FONT=MathJax_Size3][[/FONT][FONT=MathJax_Math]t[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Math]b[/FONT][FONT=MathJax_Main]/(2[/FONT][FONT=MathJax_Math]a [/FONT][FONT=MathJax_Size3]) ][/FONT][FONT=MathJax_Main]2[/FONT]
Hence, show the following:
. . . . .[FONT=MathJax_Math]a[/FONT][FONT=MathJax_Size3]([/FONT][FONT=MathJax_Math]t[/FONT][FONT=MathJax_Main] +[/FONT][FONT=MathJax_Math] b[/FONT][FONT=MathJax_Main]/[2[/FONT][FONT=MathJax_Math]a][/FONT][FONT=MathJax_Size3])[/FONT][FONT=MathJax_Main]2 [/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Math] b[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]4[/FONT][FONT=MathJax_Math]a[/FONT][FONT=MathJax_Main] + [/FONT][FONT=MathJax_Math]c [/FONT][FONT=MathJax_Main]= [/FONT][FONT=MathJax_Math]a[/FONT][FONT=MathJax_Math]t[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Math]b[/FONT][FONT=MathJax_Math]t[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Math]c[/FONT]
. ..(b) Use the result of part (a) to find the values of p, q, and r such that 8x2 - 12x - 15 = p (x + q)2 + r.
. ..(c) Find the value of x for which 8x2 - 12x - 15 has its minimum.
. ..(d) By using the Quadratic Formula or otherwise, find the values of x for which the parabola y = 8x2 - 12x - 15 and the line y = 17x - 3 meet.
Last edited by a moderator: