\(\displaystyle \cos \left[\sin^{-1}\left(\frac{sqrt{2}}{3}\right)\right]\)
\(\displaystyle \csc^{-1}\left(\frac{2\sqrt{3}}{3}\right)\)
soroban said:Hello, lyssaboo!
Recall that an inverse trig expression is an angle.
\(\displaystyle \cos \left[\sin^{-1}\left(\frac{sqrt{2}}{3}\right)\right]\)
Let \(\displaystyle \L\theta\,=\,\sin^{-1}\left(\frac{\sqrt{2}}{3}\right)\)
Then: \(\displaystyle \L\:\sin\theta \:=\:\frac{\sqrt{2}}{3}\)
\(\displaystyle \theta\) is an angle in a right triangle with: \(\displaystyle \,opp\,=\,\sqrt{2},\;hyp\,=\,3\)
Using Pythagorus, we find that: \(\displaystyle adj\,=\,\pm\sqrt{11}\)
Therefore: \(\displaystyle \L\:\fbox{\cos\theta \:=\:\pm\frac{3}{\sqrt{11}}}\)