Hello, lewch45!
I have a back-door approach to these problems . . .
Find the exact value without a calculator.
\(\displaystyle (1)\; (\sin 195^o)(\cos 15^o)\)
Note that: \(\displaystyle \,\sin195^o\,=\,-\sin15^o\)
So we have: \(\displaystyle \,-\sin15^o\cdot\cos15^o\:=\:-\frac{1}{2}(2\cdot\sin15^o\cdot\cos15^o)\;=\;-\frac{1}{2}(\sin30^o)\:=\:-\frac{1}{2}\left(\frac{1}{2}\right)\;=\;-\frac{1}{4}\)
\(\displaystyle (2)\;\left(\sin\frac{11\pi}{12}\right)\left(\sin\frac{7\pi}{12}\right)\)
We have: \(\displaystyle \,(\sin165^o)(\sin105^o)\)
Note that: \(\displaystyle \,\sin165^o\,=\,\sin15^o,\;\) and \(\displaystyle \,\sin105^o\,=\,\sin75^o\,=\,\cos15^o\)
So we have: \(\displaystyle \,\sin15^o\cdot\cos15^o\:=\:\frac{1}{2}\cdot\sin30^o\:=\:\frac{1}{2}\left(\frac{1}{2}\right)\:=\:\frac{1}{4}\)