Hello, Westsiderider00!
Edit: Sorry, I made a blunder . . . I'll correct it now.
Find the exact solution of: \(\displaystyle \,\tan2x\,-\,\cot x\:=\:0\) in the interval \(\displaystyle [0,\,2\pi)\)
We have: \(\displaystyle \,\tan2x\;=\;\cot x\;\;\Rightarrow\;\;\tan2x\;=\;\frac{1}{\tan x}\)
Double-angle formula: \(\displaystyle \,\frac{2\tan x}{1\,-\,\tan^2x} \;= \;\frac{1}{\tan x}\)
Clear denominators: \(\displaystyle \,2\tan^2x\;=\;1\,-\,\tan^2x\)
We have: \(\displaystyle \:3\tan^2x \:=\:1\;\;\Rightarrow\;\;\tan^2x\:=\;\frac{1}{3}\;\;\Rightarrow\;\;\tan x\:=\:\pm\frac{1}{\sqrt{3}}\)
Therefore: \(\displaystyle \,x\;=\;\frac{\pi}{6},\;\frac{5\pi}{6},\;\frac{\7\pi}{6},\;\frac{11\pi}{6}\)