evaluating

Evaluate 7sin[ln8x]dx.\displaystyle Evaluate \ 7\int sin[ln|8x|]dx.

OK, let k = ln8x, dk = dxx, and x = ek8.\displaystyle OK, \ let \ k \ = \ ln|8x|, \ dk \ = \ \frac{dx}{x}, \ and \ x \ = \ \frac{e^k}{8}.

Therefore, 7sin[ln8x]dx = 78sin(k)ekdk, remember this.\displaystyle Therefore, \ 7\int sin[ln|8x|]dx \ = \ \frac{7}{8}\int sin(k)e^kdk, \ remember \ this.

Now 78sin(k)ekdk, let u = sin(k), du = cos(k)dk\displaystyle Now \ \frac{7}{8}\int sin(k)e^kdk, \ let \ u \ = \ sin(k), \ du \ = \ cos(k)dk

and dv = ekdk,      v = ek.\displaystyle and \ dv \ = \ e^kdk, \ \implies \ v \ = \ e^k.

Hence, we have 78sin(k)ekdk = 78eksin(k)78ekcos(k)dk.\displaystyle Hence, \ we \ have \ \frac{7}{8}\int sin(k)e^kdk \ = \ \frac{7}{8}e^ksin(k)-\frac{7}{8}\int e^kcos(k)dk.

Now, ekcos(k)dk = ekcos(k)+eksin(k)dk.\displaystyle Now, \ \int e^kcos(k)dk \ = \ e^kcos(k)+\int e^ksin(k)dk.

Ergo, we now have: 78sin(k)ekdk = 78eksin(k)78ekcos(k)78eksin(k)dk.\displaystyle Ergo, \ we \ now \ have: \ \frac{7}{8}\int sin(k)e^kdk \ = \ \frac{7}{8}e^ksin(k)-\frac{7}{8}e^kcos(k)-\frac{7}{8}\int e^ksin(k)dk.

Hence, 74eksin(k)dk = 78eksin(k)78ekcos(k)+C or eksin(k)dk = eksin(k)2ekcos(k)2+C.\displaystyle Hence, \ \frac{7}{4}\int e^ksin(k)dk \ = \ \frac{7}{8}e^ksin(k)-\frac{7}{8}e^kcos(k)+C \ or \ \int e^ksin(k)dk \ = \ \frac{e^ksin(k)}{2}-\frac{e^kcos(k)}{2}+C.

\(\displaystyle \int e^ksin(k)dk \ = \ 8\int sin[ln|8x|}dx \ = \ 4xsin[ln|8x|]-4xcos[ln|8x|] +C.\)

Therefore 7sin[ln8x]dx = 7x2[sin(ln8x)cos(ln8x)]+C, QED.\displaystyle Therefore \ 7\int sin[ln|8x|]dx \ = \ \frac{7x}{2}[sin(ln|8x|)-cos(ln|8x|)]+C, \ QED.

Ryan, where do you get these "Icky" problems?\displaystyle Ryan, \ where \ do \ you \ get \ these \ "Icky" \ problems?

If these are the problems your Professor gives you, then he or she must indeed\displaystyle If \ these \ are \ the \ problems \ your \ Professor \ gives \ you, \ then \ he \ or \ she \ must \ indeed

be a stern taskmaster.\displaystyle be \ a \ stern \ taskmaster.
 
Top