evaluating

Evaluate 0π/85cos(4t)sin(4t)dt\displaystyle Evaluate \ \int_{0}^{\pi/8}5^{cos(4t)}sin(4t)dt

Let u = cos(4t), then du = 4sin(4t)dt,      sin(4t)dt = du4\displaystyle Let \ u \ = \ cos(4t), \ then \ du \ = \ -4sin(4t)dt, \ \implies \ sin(4t)dt \ = \ \frac{du}{-4}

Hence, 14105udu = 14015udu = 5u4ln(5)]01\displaystyle Hence, \ \frac{-1}{4}\int_{1}^{0}5^udu \ = \ \frac{1}{4}\int_{0}^{1}5^udu \ = \ \frac{5^u}{4ln(5)}\bigg]_{0}^{1}

= 54ln(5)14ln(5) = 1ln(5)\displaystyle = \ \frac{5}{4ln(5)}-\frac{1}{4ln(5)} \ = \ \frac{1}{ln(5)}
 
like how you did yours BigGlenntheHeavy. seems easier than what i did. thanx again for your work.
 
Top