For n any non-negative integer evaluate the integral :
∫xnLn(x)dx
Attempt to solution:
use integration by parts
dv=xn
v=n−1xn−1
u=Ln(x)
du=1/x
\(\displaystyle \int udv=Ln(x)\frac{x^{n-1}}{n-1}-\int\frac{x^{n-1}}{n-1}\frac{1}x}\)
I'm stuck here how do l further simplify this thing ?
∫xnLn(x)dx
Attempt to solution:
use integration by parts
dv=xn
v=n−1xn−1
u=Ln(x)
du=1/x
\(\displaystyle \int udv=Ln(x)\frac{x^{n-1}}{n-1}-\int\frac{x^{n-1}}{n-1}\frac{1}x}\)
I'm stuck here how do l further simplify this thing ?