For n any non-negative integer evaluate the integral :
\(\displaystyle \int x^n Ln(x) dx\)
Attempt to solution:
use integration by parts
\(\displaystyle dv=x^n\)
\(\displaystyle v=\frac{x^{n-1}}{n-1}\)
\(\displaystyle u=Ln(x)\)
\(\displaystyle du=1/x\)
\(\displaystyle \int udv=Ln(x)\frac{x^{n-1}}{n-1}-\int\frac{x^{n-1}}{n-1}\frac{1}x}\)
I'm stuck here how do l further simplify this thing ?
\(\displaystyle \int x^n Ln(x) dx\)
Attempt to solution:
use integration by parts
\(\displaystyle dv=x^n\)
\(\displaystyle v=\frac{x^{n-1}}{n-1}\)
\(\displaystyle u=Ln(x)\)
\(\displaystyle du=1/x\)
\(\displaystyle \int udv=Ln(x)\frac{x^{n-1}}{n-1}-\int\frac{x^{n-1}}{n-1}\frac{1}x}\)
I'm stuck here how do l further simplify this thing ?