Evaluating a complicated integral: int x^n Ln(x) dx

chengeto

New member
Joined
Feb 28, 2009
Messages
49
For n any non-negative integer evaluate the integral :

xnLn(x)dx\displaystyle \int x^n Ln(x) dx

Attempt to solution:

use integration by parts

dv=xn\displaystyle dv=x^n
v=xn1n1\displaystyle v=\frac{x^{n-1}}{n-1}

u=Ln(x)\displaystyle u=Ln(x)
du=1/x\displaystyle du=1/x
\(\displaystyle \int udv=Ln(x)\frac{x^{n-1}}{n-1}-\int\frac{x^{n-1}}{n-1}\frac{1}x}\)

I'm stuck here how do l further simplify this thing ?
 
chengeto said:
For n any non-negative integer evaluate the integral :

xnIn(x)dx\displaystyle \int x^n In(x) dx


Attempt to solution:

use integration by parts

dv=xn\displaystyle dv=x^n
v=xn1n1\displaystyle v=\frac{x^{n-1}}{n-1}

u=In(x)\displaystyle u=In(x)
du=1/x\displaystyle du=1/x
\(\displaystyle \int udv=In(x)\frac{x^{n-1}}{n-1}-\int\frac{x^{n-1}}{n-1}\frac{1}x}\)

I'm stuck here how do l further simplify this thing ?

xn1x=xn2\displaystyle \frac{x^{n-1}}{x} \, = \, x^{n-2}

change 'In' to 'Ln' in your post to avoid confusion.
 
Subhotosh Khan said:
chengeto said:
For n any non-negative integer evaluate the integral :

xnIn(x)dx\displaystyle \int x^n In(x) dx


Attempt to solution:

use integration by parts

dv=xn\displaystyle dv=x^n
v=xn1n1\displaystyle v=\frac{x^{n-1}}{n-1}

u=In(x)\displaystyle u=In(x)
du=1/x\displaystyle du=1/x
\(\displaystyle \int udv=In(x)\frac{x^{n-1}}{n-1}-\int\frac{x^{n-1}}{n-1}\frac{1}x}\)

I'm stuck here how do l further simplify this thing ?

xn1x=xn2\displaystyle \frac{x^{n-1}}{x} \, = \, x^{n-2}

change 'In' to 'Ln' in your post to avoid confusion.


Thanks for the help
 
dv=xndx\displaystyle dv = x^{n}dx

dv=xndx\displaystyle \int{dv} = \int{x^{n}}dx

v=xn+1n+1, not xn1n1\displaystyle v = \frac{x^{n+1}}{n+1},\ not\ \frac{x^{n-1}}{n-1}

Also, to be picky, dv does not equal xn. it equals xndx\displaystyle dv \ does \ not \ equal \ x^{n}. \ it \ equals \ x^{n}dx
 
Top