evaluate

Ryan Rigdon

Junior Member
Joined
Jun 10, 2010
Messages
246
here is a problem that requires us to simplify and type an exact answer using radicals as needed. i am leaning towards 8*ln(3) for my final answer. what do you think?
 

Attachments

  • img005.jpg
    img005.jpg
    21.5 KB · Views: 120
Ryan Rigdon said:
type an exact answer using radicals as needed ? I'm not sure what "as needed" means, here.

8 * ln(3) is the exact answer.

8.788898 is only an approximation (to six decimal places).

 
Ryan Rigdon said:
means if we needed to use radicals put them in

You simply repeated the information. Doing that explains nothing!

I still do not understand the condition which satisfies "if we needed to use radicals".

How do you know when you're required to use radical notation versus something else?

(I also do not understand why you're using the past tense. Is the requirement no longer valid?)

 
You are all wet.\displaystyle You \ are \ all \ wet.

sec(x)csc(x)dx  sec(x)dx + csc(x)dx\displaystyle \int sec(x) csc(x) dx \ \ne \ \int sec(x)dx \ + \ \int csc(x)dx

(5)(3)  5+3, If you got the right answer, you fudged it.\displaystyle (5)(3) \ \ne \ 5+3, \ If \ you \ got \ the \ right \ answer, \ you \ fudged \ it.

Also note, 1cos(x)dx  lnsin(x)\displaystyle Also \ note, \ \int \frac{1}{cos(x)}dx \ \ne \ ln|sin(x)|
 
Correct way to solve this definite integral.\displaystyle Correct \ way \ to \ solve \ this \ definite \ integral.

π/6π/38sec(x)csc(x)dx = 8π/6π/3dxsin(x)cos(x)\displaystyle \int_{\pi/6}^{\pi/3}8sec(x)csc(x)dx \ = \ 8\int_{\pi/6}^{\pi/3} \frac{dx}{sin(x)cos(x)}

Now, let u = sin(x)1+cos(x) = tan(x/2), yields sin(x) = 2u1+u2,\displaystyle Now, \ let \ u \ = \ \frac{sin(x)}{1+cos(x)} \ = \ tan(x/2), \ yields \ sin(x) \ = \ \frac{2u}{1+u^2},

cos(x) = 1u21+u2, and dx = 2du1+u2.\displaystyle cos(x) \ = \ \frac{1-u^2}{1+u^2}, \ and \ dx \ = \ \frac{2du}{1+u^2}.

Ergo, we have 8233/32du/(1+u2)2u(1u2)/(1+u2)2 = 8233/31+u2u(1u2)du\displaystyle Ergo, \ we \ have \ 8\int_{2-\sqrt3}^{\sqrt3/3}\frac{2du/(1+u^2)}{2u(1-u^2)/(1+u^2)^2} \ = \ 8\int_{2-\sqrt3}^{\sqrt3/3}\frac{1+u^2}{u(1-u^2)}du

= 8233/3[1u1u11u+1]du = ?  The correct answer is 8ln(3).\displaystyle = \ 8\int_{2-\sqrt3}^{\sqrt3/3}\bigg[\frac{1}{u}-\frac{1}{u-1}-\frac{1}{u+1}\bigg]du \ = \ ? \ \ The \ correct \ answer \ is \ 8ln(3).

Can you take it from here?\displaystyle Can \ you \ take \ it \ from \ here?
 
i see where i fudged it. going to try another way and then try it with your helpful hints. thanx so much will post my findings later.
 
From my photographic memory.\displaystyle From \ my \ photographic \ memory.

Note, you can let u equal anything as long as everything else jels.\displaystyle Note, \ you \ can \ let \ u \ equal \ anything \ as \ long \ as \ everything \ else \ jels.
 
BigGlenntheHeavy said:
Correct way to solve this definite integral.\displaystyle Correct \ way \ to \ solve \ this \ definite \ integral.

π/6π/38sec(x)csc(x)dx = 8π/6π/3dxsin(x)cos(x)\displaystyle \int_{\pi/6}^{\pi/3}8sec(x)csc(x)dx \ = \ 8\int_{\pi/6}^{\pi/3} \frac{dx}{sin(x)cos(x)}

Now, let u = sin(x)1+cos(x) = tan(x/2), yields sin(x) = 2u1+u2,\displaystyle Now, \ let \ u \ = \ \frac{sin(x)}{1+cos(x)} \ = \ tan(x/2), \ yields \ sin(x) \ = \ \frac{2u}{1+u^2},

cos(x) = 1u21+u2, and dx = 2du1+u2.\displaystyle cos(x) \ = \ \frac{1-u^2}{1+u^2}, \ and \ dx \ = \ \frac{2du}{1+u^2}.

Ergo, we have 8233/32du/(1+u2)2u(1u2)/(1+u2)2 = 8233/31+u2u(1u2)du\displaystyle Ergo, \ we \ have \ 8\int_{2-\sqrt3}^{\sqrt3/3}\frac{2du/(1+u^2)}{2u(1-u^2)/(1+u^2)^2} \ = \ 8\int_{2-\sqrt3}^{\sqrt3/3}\frac{1+u^2}{u(1-u^2)}du

= 8233/3[1u1u11u+1]du = ?  The correct answer is 8ln(3).\displaystyle = \ 8\int_{2-\sqrt3}^{\sqrt3/3}\bigg[\frac{1}{u}-\frac{1}{u-1}-\frac{1}{u+1}\bigg]du \ = \ ? \ \ The \ correct \ answer \ is \ 8ln(3).

Can you take it from here?\displaystyle Can \ you \ take \ it \ from \ here?


as you stated above  The correct answer is 8ln(3).\displaystyle \ The \ correct \ answer \ is \ 8ln(3).

i did get this answer as well.
 


Here's what I suspect, Ryan.

I'm thinking that you might have put the integral into software, getting something like:

ln(tan(b)) - ln(tan(a))

You then tried to reason backwards from this result.

If this is the case, then you didn't really get anything.

 
Note, Ryan for integrals involving rational functions of sine and cosine, the substitution

u = sin(x)1+cos(x) = tan(x/2) will yield cos(x) = 1u21+u2, check;\displaystyle u \ = \ \frac{sin(x)}{1+cos(x)} \ = \ tan(x/2) \ will \ yield \ cos(x) \ = \ \frac{1-u^2}{1+u^2}, \ check;

u2 = sin2(x)(1+cos(x))2 = 1cos2(x)(1+cos(x))2 = 1cos(x)1+cos(x)\displaystyle u^2 \ = \ \frac{sin^2(x)}{(1+cos(x))^2} \ = \ \frac{1-cos^2(x)}{(1+cos(x))^2} \ = \ \frac{1-cos(x)}{1+cos(x)}

Solving for cos(x) in this equation, we have cos(x) = 1u21+u2\displaystyle Solving \ for \ cos(x) \ in \ this \ equation, \ we \ have \ cos(x) \ = \ \frac{1-u^2}{1+u^2}

sin(x) = 2u1+u2; u = sin(x)1+cos(x), sin(x) = u(1+cos(x)) = u(1+1u21+u2) = 2u1+u2\displaystyle sin(x) \ = \ \frac{2u}{1+u^2}; \ u \ = \ \frac{sin(x)}{1+cos(x)}, \ sin(x) \ = \ u(1+cos(x)) \ = \ u\bigg(1+\frac{1-u^2}{1+u^2}\bigg) \ = \ \frac{2u}{1+u^2}

and dx = 2du1+u2; u = tan(x/2)      x2 = arctan(u), dx = 2du1+u2\displaystyle and \ dx \ = \ \frac{2du}{1+u^2}; \ u \ = \ tan(x/2) \ \implies \ \frac{x}{2} \ = \ arctan(u), \ dx \ = \ \frac{2du}{1+u^2}

Who originated this I dont know, perhaps it is lost in antiquity.\displaystyle Who \ originated \ this \ I \ don't \ know, \ perhaps \ it \ is \ lost \ in \ antiquity.
 
here is another way i did it and got the same answer of 8*ln(3)
 

Attachments

  • img006.jpg
    img006.jpg
    131.4 KB · Views: 81
As always Ryan there is more than one way to skin a cat.\displaystyle As \ always \ Ryan \ there \ is \ more \ than \ one \ way \ to \ skin \ a \ cat.

You way is better (less grunt work), I missed it.\displaystyle You \ way \ is \ better \ (less \ grunt \ work), \ I \ missed \ it.
 
thanx for the compliment. they had an example in the book that used secxcscx = tanx + cotx, a trig identity i have never seen before. nice to learn something new.
 
Ryan, prove the identity sec(x)csc(x) = tan(x)+cot(x)\displaystyle Ryan, \ prove \ the \ identity \ sec(x)csc(x) \ = \ tan(x)+cot(x)
 
You cant prove anything unless you try.\displaystyle You \ can't \ prove \ anything \ unless \ you \ try.
 
Top