\(\displaystyle Correct \ way \ to \ solve \ this \ definite \ integral.\)
\(\displaystyle \int_{\pi/6}^{\pi/3}8sec(x)csc(x)dx \ = \ 8\int_{\pi/6}^{\pi/3} \frac{dx}{sin(x)cos(x)}\)
\(\displaystyle Now, \ let \ u \ = \ \frac{sin(x)}{1+cos(x)} \ = \ tan(x/2), \ yields \ sin(x) \ = \ \frac{2u}{1+u^2},\)
\(\displaystyle cos(x) \ = \ \frac{1-u^2}{1+u^2}, \ and \ dx \ = \ \frac{2du}{1+u^2}.\)
\(\displaystyle Ergo, \ we \ have \ 8\int_{2-\sqrt3}^{\sqrt3/3}\frac{2du/(1+u^2)}{2u(1-u^2)/(1+u^2)^2} \ = \ 8\int_{2-\sqrt3}^{\sqrt3/3}\frac{1+u^2}{u(1-u^2)}du\)
\(\displaystyle = \ 8\int_{2-\sqrt3}^{\sqrt3/3}\bigg[\frac{1}{u}-\frac{1}{u-1}-\frac{1}{u+1}\bigg]du \ = \ ? \ \ The \ correct \ answer \ is \ 8ln(3).\)
\(\displaystyle Can \ you \ take \ it \ from \ here?\)