Evaluate the limit
\(\displaystyle \L\mbox{\lim_{x\to\4} \frac{x-4}{\sqrt{x^{2}-16}\)
\(\displaystyle \L\mbox{\lim_{x\to\4} \frac{x-4}{\sqrt{x^{2}-16}\)*\(\displaystyle \L\frac{\sqrt{x^{2}+16}}{\sqrt{x^{2}+16}}\)
\(\displaystyle \L\mbox{\lim_{x\to\4}\frac{x-4\sqrt{x^{2}+16}}{x^{2}-16}\)
\(\displaystyle \L\mbox{\lim_{x\to\4}\frac{x-4\sqrt{x^{2}+16}}{(x+4)(x-4)}\)
\(\displaystyle \L\mbox{\lim_{x\to\4}\frac{\sqrt{x^{2}+16}}{x+4}\)
\(\displaystyle \L\frac{\sqrt{4^{2}+16}}{4+4}\)
\(\displaystyle \L\frac{1}{2}\)
the answer is supposed to be 0..what did I do wrong? Something in the second line?
Thanks
\(\displaystyle \L\mbox{\lim_{x\to\4} \frac{x-4}{\sqrt{x^{2}-16}\)
\(\displaystyle \L\mbox{\lim_{x\to\4} \frac{x-4}{\sqrt{x^{2}-16}\)*\(\displaystyle \L\frac{\sqrt{x^{2}+16}}{\sqrt{x^{2}+16}}\)
\(\displaystyle \L\mbox{\lim_{x\to\4}\frac{x-4\sqrt{x^{2}+16}}{x^{2}-16}\)
\(\displaystyle \L\mbox{\lim_{x\to\4}\frac{x-4\sqrt{x^{2}+16}}{(x+4)(x-4)}\)
\(\displaystyle \L\mbox{\lim_{x\to\4}\frac{\sqrt{x^{2}+16}}{x+4}\)
\(\displaystyle \L\frac{\sqrt{4^{2}+16}}{4+4}\)
\(\displaystyle \L\frac{1}{2}\)
the answer is supposed to be 0..what did I do wrong? Something in the second line?
Thanks