Re: Evaluate the integral
\(\displaystyle \int{tan(3x)}dx\)
\(\displaystyle =\int\frac{sin(3x)}{cos(3x)}dx\)
Let \(\displaystyle u=cos(3x), \;\ du = -3sin(x)dx, \;\ \frac{-du}{3}=sin(x)dx\)
\(\displaystyle = \frac{-ln(cos(3x))}{3}+C\)
Since \(\displaystyle ln(cos(x)) = -ln(\frac{1}{cos(x)})\)
we can write it as \(\displaystyle ln(sec(3x))+C\)
Technically, absolute values should be used, but.........