Evaluate the integral \[ \int tan 3x dx

Re: Evaluate the integral

tanudu=lncosu+C\displaystyle \int \tan{u} \, du = -\ln|\cos{u}| + C
 
Re: Evaluate the integral

\(\displaystyle \int \tan{3x} \, dx

This is how the problem is, but I don't know where you are getting the negative sign from?
I got this answer:
ln Icos 3xI +c\)
 
Re: Evaluate the integral

tanxdx=sinxcosxdx=lncosx+C\displaystyle \int \tan{x} \, dx = -\int \frac{-\sin{x}}{\cos{x}} \, dx = -\ln|\cos{x}| + C
 
Re: Evaluate the integral

tan(3x)dx\displaystyle \int{tan(3x)}dx

=sin(3x)cos(3x)dx\displaystyle =\int\frac{sin(3x)}{cos(3x)}dx

Let u=cos(3x),   du=3sin(x)dx,   du3=sin(x)dx\displaystyle u=cos(3x), \;\ du = -3sin(x)dx, \;\ \frac{-du}{3}=sin(x)dx

=ln(cos(3x))3+C\displaystyle = \frac{-ln(cos(3x))}{3}+C

Since ln(cos(x))=ln(1cos(x))\displaystyle ln(cos(x)) = -ln(\frac{1}{cos(x)})

we can write it as ln(sec(3x))+C\displaystyle ln(sec(3x))+C

Technically, absolute values should be used, but.........
 
Top