Subhotosh Khan & lookagain edit said:or the otherway:
\(\displaystyle \int_{1}^{7}\frac{8x^{2} + 10}{\sqrt{x}}dx\)
\(\displaystyle =8\int_{1}^{7}x^{\frac{3}{2}}dx + 10\int_{1}^{7}x^{\frac{-1}{2}}dx \ =\)
\(\displaystyle \ 8*\frac{2}{5} \left [x^{\frac{5}{2}}\right ] \right|_1^7 \ + 10*2\left [x^{\frac{1}{2}}\right ] \right|_1^7 \ =\)
\(\displaystyle \ \frac{16}{5}*[49\sqrt{7} -1] \ + \ 20*[\sqrt{7} -1]\)
and simplify......