Hello, Smily!
I think I did it . . . but someone check my work,
please!
\(\displaystyle \L\int\sqrt{1\,+\,\sqrt{1\,+\,\sqrt{x}}}\,dx\)
Let: \(\displaystyle 1\,+\,\sqrt{1\,+\,\sqrt{x}}\:=\:u\;\;\Rightarrow\;\;\sqrt{1\,+\,\sqrt{x}}\:=\:u\,-\,1\;\;\Rightarrow\;\;1\,+\, \sqrt{x}\:=\
u\,-\,1)^2\:=\:u^2\,-\,2u\,+\,1\)
\(\displaystyle \;\;\;\sqrt{x}\:=\:u^2\,-\,2u\;\;\Rightarrow\;\;x \:=\
u^2\,-\,2u)^2\:=\:u^4\,-\,4u^3\,+\,4u^2\)
Then: \(\displaystyle \,dx\:=\
4u^3\,-\,12u^2\,+\,8u)du\:=\:4(u^3\,-\,3u^2 \,+\,2u)\,du\)
Substitute: \(\displaystyle \L\,\int u^{\frac{1}{2}}\cdot4(u^3\,-\,3u^2\,+\,2u)\,du \;= \;4\L\int\left(u^{\frac{7}{2}}\,-\,3u^{\frac{5}{2}}\,+\,2u^{\frac{3}{2}}\right)\,du\)
And we get: \(\displaystyle \L\,4\left(\frac{2}{9}u^{\frac{9}{2}}\,-\,\frac{6}{7}u^{\frac{7}{2}}\,+\.\frac{4}{5}u^{\frac{5}{2}}\right)\,+\,C \;= \;\frac{8}{315}u^{\frac{5}{2}}\left(35u^2\,-\,135u\,+\,126\right)\,+\,C\)
And I'll
you back-substitute . . .