evaluate integral of sqrt[1 + sqrt[1 + sqrt[x]]] dx

Smily

New member
Joined
May 27, 2006
Messages
22
integral sqrt(1 + sqrt(1 + sqtr(x))) dx
please, help me to solve it
 
I think you're out of luck on this one. How are your numerical methods?
 
Hello, Smily!

I think I did it . . . but someone check my work, please!

\(\displaystyle \L\int\sqrt{1\,+\,\sqrt{1\,+\,\sqrt{x}}}\,dx\)
Let: \(\displaystyle 1\,+\,\sqrt{1\,+\,\sqrt{x}}\:=\:u\;\;\Rightarrow\;\;\sqrt{1\,+\,\sqrt{x}}\:=\:u\,-\,1\;\;\Rightarrow\;\;1\,+\, \sqrt{x}\:=\:(u\,-\,1)^2\:=\:u^2\,-\,2u\,+\,1\)

\(\displaystyle \;\;\;\sqrt{x}\:=\:u^2\,-\,2u\;\;\Rightarrow\;\;x \:=\:(u^2\,-\,2u)^2\:=\:u^4\,-\,4u^3\,+\,4u^2\)

Then: \(\displaystyle \,dx\:=\:(4u^3\,-\,12u^2\,+\,8u)du\:=\:4(u^3\,-\,3u^2 \,+\,2u)\,du\)


Substitute: \(\displaystyle \L\,\int u^{\frac{1}{2}}\cdot4(u^3\,-\,3u^2\,+\,2u)\,du \;= \;4\L\int\left(u^{\frac{7}{2}}\,-\,3u^{\frac{5}{2}}\,+\,2u^{\frac{3}{2}}\right)\,du\)

And we get: \(\displaystyle \L\,4\left(\frac{2}{9}u^{\frac{9}{2}}\,-\,\frac{6}{7}u^{\frac{7}{2}}\,+\.\frac{4}{5}u^{\frac{5}{2}}\right)\,+\,C \;= \;\frac{8}{315}u^{\frac{5}{2}}\left(35u^2\,-\,135u\,+\,126\right)\,+\,C\)

And I'll you back-substitute . . .
 
Here's my attempt. Let's see if it agrees with Soroban's.

\(\displaystyle \L\\\int{\sqrt{1+\sqrt{1+\sqrt{x}}}}dx\)

Let \(\displaystyle x=u^{2}\) and \(\displaystyle 2udu=dx\)

\(\displaystyle \L\\2\int{\sqrt{1+\sqrt{1+u}}}udu\)

Let \(\displaystyle 1+u=w^{2}\) and \(\displaystyle du=2wdw\)

\(\displaystyle \L\\4\int\sqrt{1+w}(w^{2}-1)wdw\)

Let \(\displaystyle 1+w=s^{2}\) and \(\displaystyle dw=2sds\)

I'll let you do the subbing to get:

\(\displaystyle \L\\\int(16s^{4}-24s^{6}+8s^{8})ds\)

Now, integrating and reverting back to terms of x, we end up with(I'll leave the details to you):

\(\displaystyle \L\\\frac{16}{5}(1+\sqrt{1+\sqrt{x}})^{\frac{5}{2}}+\frac{8}{9}(1+\sqrt{1+\sqrt{x}})^{\frac{9}{2}}-\frac{24}{7}(1+\sqrt{1+\sqrt{x}})^{\frac{7}{2}}\)

Check it all out. I do believe it jives with Soroban's solution, just a different format.
 
I remain doubtful. In any case, it can't possibly be worth it in a practical application.
 
Top